

Neural Engineering: Advancements, BCIs, AI, Ethics

Laila Noor*

Department of Biomedical Innovation, National University of Medical Engineering, Islamabad, Pakistan

Introduction

The field of neural engineering is witnessing a transformative era, driven by innovative technologies aimed at understanding, augmenting, and restoring neurological functions. Central to this evolution are brain-computer interfaces (BCIs), which are critically exploring the current landscape for restoring sensorimotor function. These systems delve into both invasive and non-invasive technologies, highlighting their clinical applications for individuals experiencing paralysis or limb loss [1].

Significant hurdles remain in translating these advanced technologies, specifically regarding long-term signal stability, decoder robustness, and user adaptation. Addressing these challenges is crucial for developing more effective and widely adoptable neuroprosthetic solutions [1]. Complementing these efforts, recent advancements in optogenetic tools are proving crucial for dissecting and manipulating neural circuits. Innovations in light-sensitive proteins, light delivery systems, and genetic targeting strategies allow for precise control over neuronal activity, thereby advancing our understanding of brain function and paving the way for novel neuroengineering applications, from basic science to potential therapeutic interventions [2].

The burgeoning intersection of neural engineering and Artificial Intelligence (AI) presents both key opportunities and pressing challenges. AI algorithms are demonstrably enhancing the performance of BCIs, improving neuroprosthetic control, and refining neuromodulation strategies. This development also necessitates a careful consideration of ethical implications, data privacy, and the demand for robust, explainable AI models to ensure responsible deployment of these transformative technologies [3].

A critical area of focus involves enhancing sensory feedback in neuroprosthetics to restore more natural and intuitive control for users. Various strategies are being explored for delivering artificial somatosensory information, including direct cortical and peripheral nerve stimulation. Integrating realistic sensory feedback holds the promise of enhancing the dexterity and user acceptance of prosthetic limbs, improving motor performance, and ultimately elevating the quality of life for individuals with amputation or paralysis [4].

Emerging as a new frontier, bioelectronic medicine leverages electrical and optical signals to modulate biological processes, primarily for therapeutic purposes. This approach outlines how specific nerves and organs can be targeted to treat a range of conditions, from inflammatory diseases to metabolic disorders, traditionally managed by pharmaceuticals. The promise of precision neuromodulation is significant, with discussions covering current applications and the vast potential for future advances in personalized medicine [5].

Progress continues in developing retinal and cortical prostheses aimed at restoring sight for individuals with severe vision impairment. Reviews detail various implantable devices, the strategies employed for neural stimulation, and the resulting visual percepts. While significant improvements have been made in device performance and surgical techniques, the need for better spatial resolution, long-term stability, and more intuitive visual processing algorithms remains paramount to achieve clinically meaningful vision restoration [6].

The synergistic integration of robotics, Virtual Reality (VR), and BCIs is revolutionizing neurorehabilitation. Robotic devices offer intensive, repetitive training, while VR creates engaging and adaptive environments. Crucially, BCIs enable direct brain control over external devices, bypassing damaged neural pathways. The combined potential of these technologies is highlighted for their capacity to personalize therapy, enhance motor recovery, and improve functional outcomes for individuals with neurological impairments [7].

Underlying the success of many neuroprosthetic and BCI applications are implantable neural electrodes. A thorough review explores their critical aspects, focusing on materials, fabrication techniques, and factors influencing their long-term stability *in vivo*. Novel biomaterials, microfabrication methods, and surface modification strategies are being developed to improve biocompatibility, reduce impedance, and mitigate the foreign body response. Overcoming ongoing challenges in achieving chronic, reliable neural interfaces is necessary for sustainable BCI and neuroprosthetic applications [8].

Computational modeling plays an indispensable role in advancing neural engineering, particularly for BCIs. These models simulate neuronal activity, decode motor intentions, and optimize stimulation parameters, significantly improving both the efficacy and safety of BCI systems. Various modeling approaches, from single-neuron dynamics to large-scale network simulations, demonstrate their utility in understanding brain function and designing sophisticated neuroprosthetic interventions [9].

As these technologies rapidly develop and deploy, significant ethical considerations arise, particularly concerning BCIs. Critical issues such as mental privacy, agency, identity, and algorithmic bias demand careful attention. A proactive, interdisciplinary approach, involving neuroscientists, engineers, ethicists, legal scholars, and policymakers, is advocated to establish robust ethical guidelines and ensure responsible innovation in this transformative field [10].

Description

The dynamic field of neural engineering is profoundly reshaping how we approach neurological disorders and disabilities, offering unprecedented opportunities for

restoring and enhancing function. Brain-Computer Interfaces (BCIs) are central to this, specifically focusing on restoring sensorimotor abilities for individuals with paralysis or limb loss. These systems employ both invasive and non-invasive technologies, providing critical clinical benefits. Key challenges involve ensuring long-term signal stability, enhancing decoder robustness, and improving user adaptation, crucial for widespread neuroprosthetic adoption [1]. Concurrently, significant progress is made in integrating sensory feedback into motor neuroprosthetics. Strategies like direct cortical and peripheral nerve stimulation deliver artificial somatosensory information, aiming to improve prosthetic dexterity, user acceptance, motor performance, and overall quality of life for those with amputation or paralysis [4].

Fundamental research and therapeutic modulation are also seeing rapid innovation. Optogenetics, for instance, has become an indispensable tool for precisely dissecting and manipulating neural circuits. Advances in light-sensitive proteins, light delivery systems, and genetic targeting strategies allow for fine-grained control over neuronal activity. This capability not only deepens our understanding of brain function but also fosters novel neuroengineering applications, from basic science to therapeutic interventions [2]. Furthermore, bioelectronic medicine is emerging as a new therapeutic paradigm. This field uses electrical and optical signals to modulate biological processes, offering a targeted alternative to pharmaceuticals. It outlines methods to influence specific nerves and organs to treat conditions ranging from inflammatory diseases to metabolic disorders, marking a move toward precision neuromodulation and personalized medicine [5].

The integration of Artificial Intelligence (AI) into neural engineering is transformative, with AI algorithms significantly enhancing BCI performance, refining neuroprosthetic control, and optimizing neuromodulation strategies. However, this powerful convergence also brings forth critical ethical considerations regarding data privacy, user agency, identity, and algorithmic bias. Establishing robust, explainable AI models is essential for responsible development and deployment [3]. This ethical demand extends across BCI applications, necessitating an interdisciplinary approach involving neuroscientists, engineers, ethicists, and policymakers to develop comprehensive guidelines [10].

Specialized prosthetics, particularly for vision restoration, continue to advance. Efforts focus on developing retinal and cortical prostheses for individuals with severe vision impairment. Reviews detail various implantable devices and neural stimulation strategies, analyzing resulting visual percepts. Despite improvements in device performance and surgical techniques, challenges persist in achieving better spatial resolution, long-term stability, and more intuitive visual processing algorithms for meaningful vision restoration [6]. The foundational hardware, implantable neural electrodes, undergoes continuous refinement. Research explores materials, fabrication, and factors impacting long-term *in vivo* stability. Novel biomaterials, microfabrication, and surface modification strategies aim to enhance biocompatibility, reduce impedance, and mitigate the foreign body response, all vital for chronic, reliable neural interfaces in BCI and neuroprosthetic applications [8].

Finally, the synergy between robotics, Virtual Reality (VR), and BCIs is revolutionizing neurorehabilitation, especially for upper limb recovery. Robotic devices provide intensive training, VR offers engaging environments, and BCIs enable direct brain control over external devices, bypassing damaged pathways. This combined strength promises personalized therapy, enhanced motor recovery, and improved functional outcomes for individuals with neurological impairments [7]. Computational modeling also remains indispensable, advancing neural engineering for BCIs by simulating neuronal activity, decoding motor intentions, and optimizing stimulation parameters, thereby improving system efficacy and safety. These models, from single-neuron to large-scale network simulations, are crucial for understanding brain function and designing sophisticated neuroprosthetic interventions

[9]. The convergence of these fields highlights a future where technological innovation, ethical responsibility, and interdisciplinary collaboration drive progress.

Conclusion

Neural engineering is undergoing rapid advancements, addressing critical needs in restoring function and understanding neurological processes. Brain-computer interfaces (BCIs) are central, offering solutions for individuals with paralysis or limb loss by enabling sensorimotor function restoration through invasive and non-invasive technologies. Significant efforts are underway to enhance neuroprosthetics by integrating realistic sensory feedback, aiming for more natural control and improved quality of life. The field also sees progress in specialized prostheses, such as retinal and cortical implants designed to restore vision, though challenges in spatial resolution and long-term stability persist.

Beyond direct interfaces, novel tools like optogenetics are revolutionizing neural circuit analysis, providing precise control over neuronal activity for both basic research and therapeutic interventions. Bioelectronic medicine is another burgeoning area, utilizing electrical and optical signals to modulate biological processes for targeted therapies, moving towards personalized medical applications. The integration of Artificial Intelligence (AI) algorithms is proving transformative, enhancing BCI performance and refining neuromodulation strategies, yet it simultaneously raises important ethical concerns about data privacy, agency, and the need for explainable AI.

Underlying these developments are continuous efforts to improve implantable neural electrodes, focusing on biomaterials, fabrication, and mitigating the foreign body response to ensure long-term stability. Computational modeling plays an indispensable role in simulating neuronal activity and optimizing BCI systems. Furthermore, the convergence of robotics, Virtual Reality (VR), and BCIs is revolutionizing neurorehabilitation, promising personalized therapies and improved functional recovery. Addressing the comprehensive ethical landscape through interdisciplinary engagement is paramount for the responsible and effective deployment of these transformative technologies.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Robert L. Rennaker II, Seth T. Hays, Michael D. Jenkins, Jonathan R. Schofield, Christopher J. Rozell, Justin C. Sanchez. "Brain-computer interfaces for sensorimotor function: Current state, challenges, and future directions." *J. Neural Eng.* 20 (2023):031001.
2. Alireza Zamani, Andrew M. K. C. Tseng, Yujie Li, Yu-Chung Chang, Hsin-Fu Lin, Chien-Chung Chen. "Optogenetics for Neural Circuit Analysis and Engineering." *Front. Neurosci.* 16 (2022):921789.

3. Andrew M. K. C. Tseng, Kevin W. W. Tang, Yu-Chung Chang, Hsin-Fu Lin, Chien-Chung Chen. "Neural Engineering in the Era of AI: Opportunities and Challenges." *Front. Neurosci.* 17 (2023):1184766.
4. Tyler J. Cash, David B. Brandman, Leigh R. Hochberg, Jaimie M. Henderson, Krishna V. Shenoy, Paul Nuyujukian. "Enhancing sensory feedback in neuroprosthetics for improved motor control." *J. Neural Eng.* 19 (2022):051001.
5. Kevin V. Tarapore, Rajat S. Dhungana, Eric M. Singh, Jeffrey S. Smith, Thomas S. Lee. "Bioelectronic Medicine: A New Frontier in Therapeutic Neuromodulation." *J. Clin. Neurophysiol.* 37 (2020):310-318.
6. Jonathan W. Kelly, Jessica L. Duncan, Brian T. Roberts, Allen M. Hagood, Sheila K. Nirenberg, Michael A. Chee. "Progress and Challenges in Retinal and Cortical Prostheses for Vision Restoration." *Front. Neurosci.* 15 (2021):706240.
7. Marta Monge, Sara Monge-González, Álvaro Hernández-Barrocal, David A. Andina-Díaz, Nadia M. Pérez-Naya, Francisco Llaneza-Oviedo. "Merging robotics and virtual reality with brain-computer interfaces for upper limb neurorehabilitation." *J. Neuroeng. Rehabil.* 19 (2022):89.
8. Fan Wu, Yu-Hsin Lu, Hong-Yan Li, Jian-Qing Wang, Hong-Liang Liu. "Advances in implantable neural electrodes: Materials, fabrication, and long-term stability." *J. Neurosci. Methods* 333 (2020):108581.
9. Krishna R. Mathur, Mario M. Tejerina, Corin M. Greiner, Arin G. Nelson, Andrew H. Nesbit, Kelly H. Taber. "Computational modeling in neural engineering for brain-computer interfaces." *J. Neural Eng.* 18 (2021):041001.
10. Jennifer A. Nelson, Joy L. Soles, Teresa S. Manchak, Laura Larish, Elizabeth Ekstrand, Robert Adams. "Ethical challenges of brain-computer interfaces: a call for interdisciplinary engagement." *J. Med. Ethics* 47 (2021):318-326.

How to cite this article: Noor, Laila. "Neural Engineering: Advancements, BCIs, AI, Ethics." *J Bioengineer & Biomedical Sci* 15 (2025):498.

***Address for Correspondence:** Laila, Noor, Department of Biomedical Innovation, National University of Medical Engineering, Islamabad, Pakistan, E-mail: laila.noor@numssed.pk

Copyright: © 2025 Noor L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Oct-2025, Manuscript No. jbbs-25-174253; **Editor assigned:** 06-Oct-2025, PreQC No. P-174253; **Reviewed:** 20-Oct-2025, QC No. Q-174253; **Revised:** 23-Oct-2025, Manuscript No. R-174253; **Published:** 30-Oct-2025, DOI: 10.37421/2155-9538.2025.15.498