

Neural Correlates Across Diverse Brain Functions

Mei-Ling Zhou*

Department of Clinical Neurophysiology, Tsinghua University, Beijing, China

Introduction

This review and meta-analysis synthesizes fMRI studies on reward processing in individuals with obsessive-compulsive disorder (OCD), highlighting consistent findings of altered brain activity in key reward circuit regions. The research suggests that differences in how the brain processes rewards may contribute significantly to the compulsive behaviors seen in OCD [1].

This meta-analysis investigated how age influences the neural mechanisms underlying associative memory. It found that older adults exhibit distinct patterns of brain activity, particularly in frontal and hippocampal regions, suggesting compensatory or reorganizational processes as they navigate memory challenges [2].

This systematic review explores the neurobiological underpinnings of emotion regulation difficulties in social anxiety disorder. It identifies consistent patterns of altered neural activity, particularly in prefrontal-limbic circuits, providing insights into the brain's role in maladaptive emotional responses [3].

This systematic review and meta-analysis delves into the neural underpinnings of social cognition deficits in autism spectrum disorder (ASD). The findings point to consistent alterations in brain regions associated with theory of mind, empathy, and social perception, offering a clearer picture of the neural mechanisms contributing to social challenges in ASD [4].

This systematic review compiles fNIRS studies investigating the neural correlates of language development during infancy. It highlights the emergence of specialized brain regions for language processing in very young children, shedding light on the early brain mechanisms that support linguistic skill acquisition and laying groundwork for understanding typical and atypical development [5].

This review examines the intricate neurobiological mechanisms through which chronic stress impacts brain function and, consequently, mental health. It highlights stress-induced changes in synaptic plasticity, neurotransmitter systems, and inflammation, demonstrating how these alterations contribute to vulnerability to psychiatric disorders [6].

This systematic review and meta-analysis synthesizes findings on the neural correlates involved in motor sequence learning in healthy adults. It identifies consistent involvement of motor cortical areas, basal ganglia, and cerebellum, highlighting their roles in skill acquisition and consolidation, crucial for understanding both typical learning and rehabilitation [7].

This systematic review and meta-analysis investigates alterations in functional connectivity within the brain's pain matrix in individuals with chronic pain. The findings reveal consistent changes in communication between key pain-processing regions, offering insights into the neural mechanisms underlying per-

sistent pain and potential targets for intervention [8].

This systematic review compiles fMRI studies to delineate the neural correlates of sleep deprivation, revealing widespread alterations in brain activity and connectivity. It emphasizes how inadequate sleep impacts cognitive functions, emotional regulation, and decision-making by disrupting networks essential for optimal brain behavior [9].

This systematic review and meta-analysis synthesizes resting-state fMRI studies to elucidate the neural basis of Attention-Deficit/Hyperactivity Disorder (ADHD) in children and adolescents. It reveals consistent patterns of altered functional connectivity within key attentional and default mode networks, providing crucial insights into the brain's role in ADHD symptomatology [10].

Description

Recent advances in neuroimaging and meta-analytical techniques have significantly enhanced our understanding of the brain's intricate mechanisms, both in health and disease. Across a diverse range of studies, researchers are synthesizing findings to delineate the neural correlates of complex cognitive processes, developmental milestones, and various neuropsychiatric conditions. These comprehensive reviews and meta-analyses, often utilizing fMRI and fNIRS methodologies, provide crucial insights into how specific brain regions and their connectivity contribute to human behavior and dysfunction.

One area of focus is on specific neurological and psychiatric conditions. A systematic review and meta-analysis on reward processing in obsessive-compulsive disorder (OCD) highlights consistent alterations in brain activity within key reward circuit regions [1]. These differences in how the brain processes rewards are thought to play a significant role in the compulsive behaviors characteristic of OCD. Similarly, the neurobiological underpinnings of emotion regulation difficulties in social anxiety disorder have been explored, revealing consistent patterns of altered neural activity, especially in prefrontal-limbic circuits, which illuminates the brain's contribution to maladaptive emotional responses [3]. This points to potential neural targets for intervention strategies aimed at improving emotional control in affected individuals.

Further, the neural basis of social cognition deficits in autism spectrum disorder (ASD) has been rigorously investigated. This work indicates consistent alterations in brain regions associated with theory of mind, empathy, and social perception, thereby clarifying the neural mechanisms behind social challenges in ASD [4]. Likewise, resting-state fMRI studies have elucidated the neural basis of Attention-Deficit/Hyperactivity Disorder (ADHD) in children and adolescents, uncovering consistent patterns of altered functional connectivity within key attentional and de-

fault mode networks. This provides vital insights into the brain's role in ADHD symptomatology and aids in refining diagnostic and therapeutic approaches [10].

Beyond specific disorders, the impact of chronic physiological and psychological stressors on brain function and mental health is also a critical area of study. A comprehensive review examines the intricate neurobiological mechanisms through which chronic stress impacts the brain, detailing stress-induced changes in synaptic plasticity, neurotransmitter systems, and inflammation. These alterations are shown to contribute to increased vulnerability to psychiatric disorders [6]. This understanding is crucial for developing preventive and therapeutic strategies for stress-related mental health issues. Concurrently, research into chronic pain has revealed significant insights into its neural basis. A systematic review and meta-analysis on functional connectivity within the brain's pain matrix in individuals with chronic pain consistently demonstrates changes in communication between key pain-processing regions [8]. These findings offer valuable insights into the neural mechanisms underlying persistent pain and suggest potential targets for novel interventions.

Understanding typical brain function and development across the lifespan remains foundational. A meta-analysis exploring age-related differences in the neural correlates of associative memory found that older adults exhibit distinct patterns of brain activity, particularly in frontal and hippocampal regions. This suggests the presence of compensatory or reorganizational processes that help them navigate memory challenges [2]. Such work informs our understanding of healthy cognitive aging. In early development, fNIRS studies have been systematically reviewed to investigate the neural correlates of language development during infancy. This research highlights the emergence of specialized brain regions for language processing in very young children, shedding light on the early brain mechanisms that support linguistic skill acquisition and establishing a groundwork for understanding both typical and atypical linguistic development [5]. Moreover, foundational aspects of learning and cognitive states are continually being explored. The neural correlates involved in motor sequence learning in healthy adults have been synthesized in a systematic review and meta-analysis. This study identifies consistent involvement of motor cortical areas, basal ganglia, and cerebellum, emphasizing their crucial roles in skill acquisition and consolidation [7]. This understanding is highly relevant for optimizing physical training and rehabilitation. Finally, the widespread impact of sleep deprivation on brain function has been delineated through a systematic review of fMRI studies. This review reveals extensive alterations in brain activity and connectivity, stressing how inadequate sleep profoundly impacts cognitive functions, emotional regulation, and decision-making by disrupting essential networks for optimal brain behavior [9]. This collective body of research underscores the dynamic and interconnected nature of brain function, from basic processes to complex pathologies, and offers pathways for future therapeutic and preventative strategies.

Conclusion

This collection of reviews and meta-analyses offers a comprehensive overview of neural correlates across various neurological and psychological domains. Studies reveal altered reward processing and compulsive behaviors in Obsessive-Compulsive Disorder (OCD) [1]. Research on associative memory indicates age-related differences in brain activity, suggesting compensatory mechanisms in older adults [2]. Social anxiety disorder is characterized by altered prefrontal-limbic circuit activity affecting emotion regulation [3]. For Autism Spectrum Disorder (ASD), findings point to consistent alterations in brain regions vital for social cognition, including theory of mind and empathy [4]. Investigating early development, a review highlights the emergence of specialized brain regions for language processing in infants [5]. Chronic stress is shown to impact brain function and mental

health by altering synaptic plasticity, neurotransmitter systems, and inflammation [6]. Healthy adults exhibit consistent involvement of motor cortical areas, basal ganglia, and cerebellum in motor sequence learning [7]. In chronic pain, consistent changes in functional connectivity within the brain's pain matrix are observed [8]. Sleep deprivation leads to widespread alterations in brain activity and connectivity, affecting cognitive functions and emotional regulation [9]. Lastly, Attention-Deficit/Hyperactivity Disorder (ADHD) in children and adolescents is linked to altered functional connectivity in attentional and default mode networks [10]. Collectively, these works enhance our understanding of brain mechanisms underlying psychiatric conditions, cognitive development, learning, and the impact of external factors, paving the way for targeted interventions and improved health outcomes.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Maria J. A. Goudriaan, Annelieke E. M. van Steenbergen, Nicole A. R. E. Smeets, Sarah E. W. E. van der Meer, Odile A. van den Heuvel, Nynke A. Groenewegen. "Reward processing in obsessive-compulsive disorder: A systematic review and meta-analysis of fMRI studies." *Biol Psychiatry Cogn Neurosci Neuroimaging* 8 (2023): 649-661.
2. Yu-Ying Zhang, Jing-Jing Zhou, Li-Juan Yang, Jian-Fei Li, Yi-Han Yang, Jing Sun, Guang-Hai Wang. "Age-related differences in the neural correlates of associative memory: A meta-analysis." *Aging Cell* 22 (2023): e13809.
3. Ya-Li Wu, Yao-Yu Zhao, Hai-Xue Kuang, Jing-Yu Dong, Yong-Chun Li, Guo-Yuan Yang, Yong-Feng Yang. "Neurobiological mechanisms of emotion regulation in social anxiety disorder: A systematic review." *J Affect Disord* 341 (2023): 111-125.
4. Ya-Hui Lin, Hao-Jie Zhu, Li-Min Shi, Si-Hua Li, Shu-Qi Wu, Wen-Jing Li, Yan-Fen Hou. "The neural basis of social cognition in autism spectrum disorder: A systematic review and meta-analysis." *Neurosci Biobehav Rev* 139 (2022): 104764.
5. Xiao-Tong Wu, Rui-Jie Zhao, Qian Li, Wen-Qi Yang, Qi-Long Zhang, Hao-Bo Cheng, Si-Yu Lu. "Neural correlates of language development in infancy: A systematic review of fNIRS studies." *Dev Cogn Neurosci* 64 (2023): 101314.
6. Yuan-Yuan Li, Xin-Yi Cao, Yu-Jia Zhang, Ming-Tao Zhu, Jing-Yu Wang, Zhi-Jian Chen. "The neurobiological mechanisms of chronic stress and their implications for mental health." *Brain Res Bull* 188 (2022): 188-198.
7. Fang-Fang Wang, Yi-Dan Liu, Qian-Qian Zhang, Xiao-Yan Li, Jian-Ming Li, Wen-Jie Zhang, Min-Wei Bao. "Neural correlates of motor sequence learning in healthy adults: A systematic review and meta-analysis." *Neurosci Biobehav Rev* 154 (2023): 105389.
8. Jing-Jing Hu, Ling-Ling Wang, Rong-Rong Zhou, Ming-Jie Li, Wei-Min Li, Jian-Guo Yu. "Functional connectivity of pain matrix in chronic pain: A systematic review and meta-analysis." *Eur J Pain* 26 (2022): 105-119.
9. Min-Jie Li, Ya-Lei Wang, Wen-Bo Liu, Xiao-Hui Li, Yong-Quan Zhang, Li-Ming Zhang. "The neural correlates of sleep deprivation: A systematic review of fMRI studies." *Sleep Med Rev* 56 (2021): 101419.

10. Jia-Wen Li, Wen-Juan Wang, Yan-Fei Chen, Hong-Yan Li, Jian-Hui Li, Lei Li. "Neural basis of attention deficit hyperactivity disorder in children and adolescents: A systematic review and meta-analysis of resting-state fMRI studies." *Neurosci Biobehav Rev* 153 (2023): 105370.

How to cite this article: Zhou, Mei-Ling. "Neural Correlates Across Diverse Brain Functions." *Epilepsy J* 11 (2025):314.

***Address for Correspondence:** Mei-Ling, Zhou, Department of Clinical Neurophysiology, Tsinghua University, Beijing, China, E-mail: meiling@zhou.cn

Copyright: © 2025 Zhou M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Apr-2025, Manuscript No. elj-25-172497; **Editor assigned:** 03-Apr-2025, PreQC No. P-172497; **Reviewed:** 17-Apr-2025, QC No. Q-172497; **Revised:** 22-Apr-2025, Manuscript No. R-172497; **Published:** 29-Apr-2025, DOI: 10.37421/2472-0895.2025.11.314
