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Abstract
In this era of nanoscience, advances of nanotechnology have led to the creation of new generations of nanostructures, 

each characterized by their explorative utilization in various types of applications in biomedicine and bio-engineering. 
These applications are expected to significantly improve the diagnosis and therapeutic aspects of many diseases. The 
materials have been explored and reported as components of biosensors and as very efficient drug delivery platform. 
Though, few nano-materials have been reported to be used in clinical medicine, but not coherently effective. This could 
be because of nano-toxicity which is a potential limitation for its use in biological system. A brief description on the 
development of nanostructure for biomedical application over the years in terms of new materials and understanding 
of their interaction with the body, may lead to better biocompatible nanostructures.
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Introduction
Nanotechnology and science of nanomaterials provide apt 

potential in engineering of materials and at present is the enormously 
growing and developing scientific technology. It is defined as the study 
of controlling, manipulating and creating systems based on their 
atomic or molecular specifications [1]. As stated by the US National 
Science and Technology Council, the essence of nanotechnology is the 
ability to manipulate matters at atomic, molecular and supra-molecular 
levels for creation of newer structures and devices [2]. Generally this 
science deals with structures sized between 1 to 100 nanometer (nm) 
in at least one dimension and involves in modulation and fabrication 
of nanomaterials and nanodevices. It has been endured as an area of 
intense scientific research in various fields like optical, electronic and 
biomedical fields. Bacterial cells, plant cells and mammalian cells 
which are more than 100 nm size can easily engulf or internalize the 
particulates of nano-size like viruses (75-100 nm), proteins (5-50 nm), 
nucleic acids (2 nm width) and atoms (0.1 nm). If we compare a single 
human hair diameter (50 µm) to 1 nm nanofibre, hair will be 50,000 
times larger than the size of 1 nm [3]. The great visionary late Nobel 
Physicist Richard P Feynman first designed the idea of molecular 
manufacturing in 1959. The legendary scientist who first suggested that 
devices and materials could someday have atomic specifications and 
that this development path cannot be avoided [4]. For years this science 
have engaged scientist in exploring the very unique physico-chemical 
properties of nanoparticles.

Perspectives of Nanotechnology
Applications in Medicine and Health

Nanotechnology has potential to remarkably affect the diagnostic 
and therapeutic approach for a disease. The unparallel sensitivity 
and performance, enhanced durability and flexibility, unique physic-
chemical properties of nano-materials, have been exploited in 
medical diagnosis (Table 1) for early detection of diseases, in target 
approached clinical therapy (Table 2) and in regenerative medicine for 
reconstruction of damaged tissues.

Medical diagnostics

The entire world has witnessed the phenomenon revolution in 
biosensors towards Point-of-care testing by glucometer for blood 
glucose monitoring. It has developed from very primitive enzyme based 
method to amperometric based principle and further development of 
reverse iontophoresis method. The technique has evolved from invasive 
procedure to non-invasive monitoring, from in-vitro diagnosis to in-
vivo monitoring of blood glucose.

Similarly many nano-devices and nano-biosensors have been 
innovated to monitor the bio- molecules, at a very low concentration 
resulting in detection of disease at an early stage. They can be a 
novel and powerful tool for cancer detection system. The traditional 
diagnostic modalities are unable to detect tumors in their initial stage 
and more imprecise in differentiating benign from malignant stage. 
Compared to the conventional methods, novel nanoparticles (NPs) are 
capable of yielding selective imaging of affected areas.

Clinical therapy and drug delivery systems

The innovative NPs not only act as efficient imaging agents for 
identifying the diseased tissues but are also ideal carriers to deliver 
anticancer drugs and other therapeutic drugs at the target site 
with optimum proficiency and minimum collateral damage to the 

Figure 1: The diagram depicts the applications of nanotechnology in various 
research fields. Nanotechnology spans many areas like biotechnology, 
national security and defense, food and agriculture, information technology, 
aerospace, plastics and textile industries, energy and environment, 
cosmetics and health and medicine (Figure 1). In this review, the health 
care benefits and risks of nanomaterials would be enlightened along with 
their limitations and challenges for their applications in medicine.
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Nanomaterial Use and its Principle References
Graphene oxide Detect very low level of cancer cells (3-5 cancer cells/ml blood) Yoon et al. [5]

Single-walled Carbon nanotubes (SWNT) Monitor blood nitric oxide level in inflammatory diseases.
It uses the principle of fluorescent signal Iverson et al. [6]

Silver based nanoparticle and Raman dye-labeled DNA 
hairpin probes

Targets specific markers in infections. Uses the principle of SERS (surface –
enhanced Raman Scattering) Wang et al. [7]

Nanoflares (first genetic based approach for detecting cancer 
cells from blood)

Enable live cell detection of intracellular mRNA. It is based on the principle of 
fluorescence. Halo et al. [8]

Iron oxide nanoworm particles coated with proteases 
(matrixmetalloproteases, cathepsins) for early detection of 
cancer

It can home to a tumor and interact with cancer proteins to produce thousand of 
biomarkers which can be detected in patient’s urine by mass spectrometry. Kwong et al. [9]

Target specific magnetic nanoparticles It allows real-time monitoring the glioblastoma multiforme microvesicles in blood. The 
are detected by a miniaturized, hand-held device. Shao et al. [10]

NanoVelcro chip – anti-EpCAM antibody coated silicon 
nanowwires overlaid with polydimethylsiloxane

To detect and isolate the circulating tumor cells. It utilizes the principle of laser micro-
dissection (LMD). Lu et al. [11]

Silver nanorod array substrate
On-chip separation and detection of biological agents like bacteria and viruses 
in blood, urine, saliva and food. It uses the principle of surface enhanced Raman 
spectroscopy (SERS).

Negri et al. [12]

Gold nanoparticles coated with influenza A specific antibodies. To detect the influenza virus in sample. It is based on the principle of dynamic light 
scattering (DLS). Driskell et al. [13]

Gold nanoparticles modified with monoclonal anti-
hemagglutinin antibody (mAb)

For detection of influenza A virus in blood. It utilizes the principle of colorimetric 
immunosensing. Liu et al. [14]

Nanoparticles that form clumps To detect presence of cancer biomarker like Prostate specific antigen and viral 
markers like p24 in low HIV viral load.

de la Rica et al. 
[15]

μQLIDA (microfabricated Quantum dot-linked immune-
diagnostic assay)

In-vitro diagnostic test for detecting nanomolar concentration of myelopeoxidase 
(MPO). It is an economic and fast detecting immunofluorescence sensor with the 
capability of 2 μl of analyte solution and detecting nanomolar concentration of MPO 
or other analytes.

Yu et al. [16]

Silicon quantum dots and fluorescent nanodiamonds
These are ultra-stable, biocompatible and nontoxic luminescent nanoprobes. It can 
be an ideal diagnostic tool for long-term bioimaging and also a non-toxic vector for 
drug delivery.

Montalti et al. [17]

Iron-oxide magnetic nanoparticles coated with peptide (poly-
dopamine)

To locate cancerous cells clusters during Magnetic Resonance Imaging (MRI) and 
photothermal cancer therapy using near-infrared laser irradiation. Wu et al. [18]

[18F]-FAC family of positron emission tomography imaging 
agents

Tumors responsive to chemotherapeutic drugs appear as bright images in PET 
scans. Braas et al. [19]

Nano-MRI agent Bind to avβ3-integrin found on the surface of newly developing blood vessels Liu et al. [20]

Gold nanoparticle based molecular diagnostic platform Under FDA approved nanosensor for genetic test for warfarin sensitivity. It allows 
testing for other genetic targets Lefferts et al. [21]

Table 1: Nanomaterials used in biosensing of analytes for early diagnosis of specific diseases.

Nanomaterial Use and its Principle References
Biomimetic nanosponge For detoxification treatment Hu et al. [23]

Nano-composite film of carbon nanotubes (CNTs)
For non-invasive ultrasound therapy. It converts light to sound and generate high 
pressure sound waves to disrupt cells. It is also called ‘Invisible knife for non-
invasive therapy.

Baac et al. [24]

Gold/Bismuth based nanoparticles To concentrate radiation used in radiation therapy to treat cancer tumors. Cooper et al. [25]
Poly(ethylene oxylated) single-walled carbon nanotubes Maintains brains blood circulation. Alqathami et al. [26]
SWNT functionalized with HER2 antibody For selective destruction of breast cancer cells Bobadilla et al. [27]
GRGDS-NPs (copolymer of poly(lactic-co-glycolic acid) 
and poly-ε-L-lysin with polyethylene glycol terminated with 
arginine-glycine-aspartic acid) based targeting ligands

These are novel hemostatic NPs administered intravenously to activates the 
clotting process and reduce bleeding due to trauma. Xiao et al. [28]

Fidgetin-like 2 (FL2) small interfering RNA (siRNA) 
nanoparticles

FL2, the regulator of cell migration is targeted by the nanoparticle encapsulated 
siRNA, to promote wound closure and regeneration. Shoffstall et al. [29]

Fullerene nanoparticles Reduce allergic reactions Charafeddine et al. [30]
Carbon nanotube based nanofiber scaffold Cardiac tissue engineering Ryan et al. [31]

Thymosin β4 coated poly (ε-caprolactone) nanoscaffolds
The coated nanoscaffolds, stimulates growth and differentiation of cardiomyocytes 
into functioning cardiac tissue and thus have potential for cardiac replacement after 
any cardiac event.

Oh et al. [32]

BIND-014, a prostate specific membrane antigen (PSMA)-
targeted NP containing docetaxel Used in chemotherapy naïve metastatic castrate with refractory solid tumors Kumar et al. [33]

siRNA encapsulated in a cyclodextrin based nanoparticle To inhibit the key enzyme production in cancer cells Mita et al. [34]
Gelatin nanoparticles as acarrier for osteopontin (OPN) Given intranasally for treatment of ischemic stroke Davis et al. [35]
Nanoparticles poly (D,L-Lactitide-co-glycolide)-(PLGA-) 
based polymer Carrier for insulin delivery in diabetic patients Kanasty et al. [36]

Monodisperse microgels consisting of chitosan matrix, 
enzyme nanocapsules and recombinant human insulin

The microgels with enzyme nanocapsules monitor insulin release and basal blood 
sugar level in type 1 diabetes mellitus. Joachim et al. [37]

Nanocrystalline silver Antimicrobial agent for treatment of wounds Verma et al. [38]
Bioreducible polycations-polymer of Polyethylenimine (PEI) pDNA carrier with endosomal escape function Gu et al. [39]

Table 2: Nanomaterials used for clinical therapy in various diseases.
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neighboring healthy tissues. The therapeutic modality is now being 
shifted towards intracellular molecular targets rather than the cell itself. 
Intracellular delivery of such gene-encoding DNAs, gene- silencing 
small interfering RNAs or recombinant proteins can be achieved by 
utilizing biocompatible packing materials. The packaging scaffold 
usually used are liposomes or bacterial toxins or viral NPs, but usually 
they get degraded and cleared off early from the circulation or may not 
reach to the potential target site. Recent developments in bioreducible 
polymers have gained more attention in as they are amenable to 
molecular programming through sensors that can respond to the 
changes in ion concentrations in the micro- environment and thus can 
differentiate between extracellular and intracellular sites [22].

Tissue growth and regenerative medicine

Researches in tissue regenerative medicine aims in developing 
implants or scaffolds capable for delivering drugs, growth factors, 
hormones for tissue repair. They provide sustained delivery of 
bioactive molecules to support survival, infiltration and proliferation 
of cells for tissue engineering. The expected outcome of such treatment 
modality is to have complete tissue replacement and functional 
recovery. Extracellular matrix formation is enhanced by using CNT, 
nanowires and nanoparticles. Biomimetic hydrogels are used as 
controlled biomolecule delivery of growth factors to expedite bone 
regeneration [40-42]. The nanofilled composites provide better 
compressibility, tensile strength and flexure strength compared to 
traditional composite microparticles. Crosslink agent composed of 
partially hydrolyzed polyacrylamide (HPAM) and nanocrystalline 
hydroxyapatite (nHAp) can be a novel scaffold for osteochondral 
repair [43]. Chodritin sulfate nanoparticles (CSnps) within the scaffold 
of chitin blended with poly(butylenes succinate) have been used for 
skin repair in wounds [44]. It provides superior aesthetic sense as it 
is biodegradable, biocompatible and forma a porous layer for better 
nutrient exchange. Polyethylene glycol-based hydrogel scaffold are 
aid in retention and growth of transplanted heart cells in myocardial 
infarction [45]. Glass slide coated with garphene oxide film stimulate 
the adhesion and osteogenic differentiation of human adipose-derived 
stem cells [46]. Collagen, chondroitin-6-sulfate, chitosan and laminin 
matrix, together have been demonstrated to support islet function in-
vitro and allow islet survival and post-transplantation vascularization 
[47]. Systemic understanding of the interaction between the cells and 
the in-vivo microenvironment at nanoscale level can abet for better 
designing and fabrication of biomimetic scaffolds.

Toxic Outcomes of Nanostructures
Nanotechnology is now regarded the double edged sword. One 

edge depicts for potential health benefits and the other for potential 
health risks. Nanotechnology provides numerous advantages such as 
high performance, reduced size, mass and power consumption, POC 
testing and improved reliability and robustness. In order to explore 
the characteristic physicochemical properties of these nanostructures, 
the toxicity aspect is overlooked. They elicit unique and unpredictable 
biological responses, as discussed below, because of their tunable 
properties.

Size, shape and surface area of the nanomaterial

Because of their nanoscale size, these particles are easily accessible 
to the vital cells and organs. They interact with the host cell and remain 
adhered to the surface or internalize by translocation or by receptor 
mediated endocytosis. Intracellularly also they may alter the cellular 
metabolism by interacting with the subcellular organelles. The surface 
area ‘o’ the particle increases with decrease in particle size and the ratio 
of surface to total atoms or molecules increases exponentially as the 

particle size decreases. Ivask et al. had explained about “size-dependent: 
biological effects of silver NPs. In his study, silver NPs of <10 nm in 
comparison to NPs >10 nm, proved to be more toxic because of their 
higher intracellular bioavailability [48].

Shape dependent toxicity has also been reflected in different studies 
based on carbon nanotubes, nanorods, nanospheres, silicas, copper, 
gold and many more. In a comparative study of copper oxide (CuO) 
nanorods to CuO nanospheres by Kennedy et al. results indicated 
that the higher surface area of nanorods released more ions and 
therefore more toxic [49]. Yet optimizing the synthetic methodology, 
unique properties may be enhanced with minimal adverse reactions. 
Almodarresiyeh et al. in their studies devised a new methodology to 
synthesize rod-like zincoxide (ZnO) nanoparticles in presence of 
polymers (polyethylenimine and hexamethylenetetramine). These 
NPs of ZnO have a wide band gap semiconductor with large excitation 
energy that favors its suitability to be used in optoelectronic devices 
[50-52].

Solubility of NPs in the biological media

The solubility of the nanomaterials in a medium is affected by its 
particle dispersion and agglomeration state, which in turn is influenced 
by its size and surface ratio. Thus the reciprocal action between the 
particle and its solvent also a determining factor for toxicity of NPs. 
Hamilton et al. illustrated the greater toxic effect of longer TiO2 
nanofibers (15 mm) in comparison to shorter fibers because the longer 
fibres are insoluble in lung fluids and remain in lungs for longer time 
which initiates inflammatory response by the alveolar macrophages 
[53].

Yang et al. reported in his study that silver NPs dissolved in lower 
ionic strength resulted in greater toxicity than the same NPs in a 
higher ionic strength [54]. TiO2 or ZnO exhibits different diameters in 
different biological milieu and thus toxicity differs accordingly.

Surface chemistry (charge/surface coatings)

Surface charge of a NP is also a major determinant factor for its 
interaction with the biological environment. As per Dejaguin-Landau-
Verwey-Overbeek (DLVO) theory, stability of particles is determined 
by the net electrostatic surface interactions of the particles and the Van 
der Waals forces. As depicted in a study by Stebounova et al. polymer-
coated silver NPs with higher surface charge were more stable than the 
silver NPs with unspecified coatings in simulated lung fluid [55]. Park 
et al. suggested that negatively charged silica (SiO2) NPs had more toxic 
effect compared to weakly negatively charged silica NPs. Articles have 
revealed significant cellular uptake of positively charged SiO2 owing 
to their enhanced opsonisation by plasma proteins. SiO2 also induce 
intracellular reactive oxygen species (ROS) generations and exert their 
toxic effect by oxidative stress [56].

Composition and degree of purity

Nanomaterials are composed of heavy metals with known toxicity 
such as Cadmium Selenide (CdSe) NPs are toxic to rat liver and renal 
cells [57], carbon based NPs cause lung tumors [58] and iron containing 
NPs are toxic to nerve cells [59].

Liu et al. in their study provided evidences for genotoxic and 
cytotoxic effects of cadmium sulfide (CdS) on renal cells, liver cells, 
spermatozoon and tested organs [57].

Harper et al. assessed the impact of synthesis method and purity 
on the biocompatibility of peptide-capped gold-glutathione (Au-GSH) 
NPs. The study displayed significant morbidity and mortality for Au-
GSH-(Trp)2 purified by dialysis. The toxic effects were also significant 
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for Au-GSH-(His)2 synthesized by either dialysis or ultracentrifugation 
whereas Au-GSH-(Met)2 manifested least toxicity. A prudent synthesis 
protocol can yield high degree purity for NPs and show improved 
biocompatibility [60].

Aspect ratio dependent toxicity

It is seen that toxicity is directly proportional to the aspect ratio 
(ratio of highest to the lowest dimension considered the particles are of 
similar size). NPs with high aspect ratio include nanotubes, nanowires 
and nanorods whereas low aspect ratio seen in spherical, oval, cubic 
forms [61]. Asbestos fibers longer than 10 microns cause lung cancer, 
those of 5 micron size lead to mesothelioma in lungs whereas fibers 
of 2 microns with asbestosis. The longer asbestos fibers are degraded 
perpendicularly and made shorter and cleared by the macrophages. 
Smaller fibers are cut longitudinally generating more of smaller 
diameter fibres which are more difficult to be removed. However slow 
clearance of degraded particles would lead to accumulation of the 
longer fibers in the alveoli inducing inflammatory changes. Long aspect 
ratio of SWCNT has been signoificantly associated with pulmonary 
toxicity when compared to the spherical amorphous carbon black 
particles [62].

Aggregation state of NPs

Aggregation is an ubiquitous phenomenon among all NPs and 
mediate cellular uptake of bio-molecules. Albanese et al. investigated 
uptake of transferrin-coated gold NP aggregate on different cell 
lines. The aggregates reduced the uptake via receptor-mediated-
endocytosis in HeLa and A549 cells. In contrast, foe MDA-MB-435 
cells, the aggregates internalized independent of transferring receptor 
via unknown mechanism. The study predicted that NP aggregate bring 
about multiple cellular responses [63]. Tripathy et al. demonstrated about 
the effects of particle size and aggregation of ZnO nanoparticles. Smaller 
aggregates tend to have higher dissolution rate and cellular uptake resulting 
in ROS generation and induction of cellular apoptosis [64].

Antigenicity of NPs

Nanoparticles can be antigenic themselves and the immunogenicity 
depends on their physicochemical properties. They can be opsonized 
by plasma proteins and result in activation of complement cascade. 
As reported by Trynda-Limiesz et al. nab-paclitaxel in pigs evoked 
immunological type of response when compared to albumin control 
[65]. Abrams et al. documented that liposomal siRNA delivery 
vehicle LNP201 induced cytokine release (cytokine storm) typical of 
unregulated innate immune response [66].

Challenges for Nanotechnology
Although nanotechnology is a very rapidly growing field, still the 

product availability is far away from reach because of various hurdles at 
different stages of development. The barriers for growth, as enumerated 
below, if overcome can bring about revolutionary changes in the field 
of health care and medicine.

Lack of knowledge NP components and their characteristics 
There are numerous varieties of nanostructures, with different 

compositions and actions. The in-vitro and in-vivo physicochemical 
phenomenon of these NPs are not well understood. Hence identifying 
the right nanomaterial for the intended indication is crucial. PEI is 
being recognized as an excellent cargo for intracellular nucleic acid 
targeting. Nonetheless, it is also regarded as a significant cytotoxic 
agent. Owing to its higher proficiency in drug delivery, methods have 
been devised to reduce its toxicity by crosslinking low molecular weight 
PEI to dithiodipropionic acid di(N-succinimidyl ester) [22].

Lack of uniformity of toxicity

Nanomaterials of different composition, size or shape may be 
toxic to a different set of cells at different set of exposure conditions. 
The target cell and the target moieties for toxicity varies with the 
composition, size, shape, charge, aggregation, coating and solubility of 
nanoparticles. CNTs at 400 µg/ml are cytotoxic to human T-cells, 3.06 
µg/cm2 on alveolar macrophages whereas cell cultures exposed to 3.8 
µg/ml do not reveal any cytotoxicity [22].

Lack of standardization in model systems and test assay

There is no good in vivo model to elucidate the physical, chemical 
and biological behavior precisely. It is difficult to validate the results of 
interplay of NPs with cells as the outcome varied with different set of 
cells even if the test assay conditions remain same.

Lack of standard synthesis protocol

Production of nanomaterials utilizes numerous synthetic reagents 
which are also toxic. Efficient synthetic pathway must be developed 
with avoidance to use of precarious pollutants. Prudent use of synthetic 
material and comply with safety guidelines can ensure for yield of high 
purity and better biocompatible nanoparticle.

Lack of efficient analytical tools

Nanotechnology deals with nanoscale structures, hence novel 
analytical methods need to be developed to acquire the nanomaterial 
description precisely such as particle size, surface charge, surface 
chemistry, crystalline state, aggregation state and its distribution. 
New innovations in metrological technology requisite to predict the 
behavior of nanoparticle in biological media.

Lack of understanding of impact on biological system

Impact on health and safety issues still unclear in terms of cellular 
or organ toxicity, genotoxic or carcinogenic. These materials are small 
enough to be inhaled and the particles accumulate in lung alveoli to 
induce inflammatory changes or carcinogenic effect. This would be of 
prime concern because the workers will be under threat of occupational 
hazard.

Lack of in-vivo monitoring systems

Substantial infrastructure for in-vivo analysis of the nanomedicines, 
inability to monitor multiple probes and patients need to be admitted 
for analysis, are the major factors that preclude optimization of the 
biological activities.

Lack of standardized safety guidelines

Due to complex nature of nanomedicines and their multiform 
toxicity, it is difficult to outline a particular safety guideline for a 
particular nanoparticle. To provide a safety protocol, empirical 
evidence and extensive pre-clinical testing is mandatory.

Lack of well trained workforce

High energy consumption due to which production cost is very 
high and restricted accessibility to people. This is a major hindrance for 
the goal to be achieved for POC testing to the remote areas.

It is the need of the hour to ensue towards efficient production of 
nanostructures ‘Safe by Design’, through green chemistry, optimizing 
standard protocols for synthesis, production and clinical testing. In 
shaping of ‘Green Nanotechnology’, contribution and involution of 
scientific personnels, persons from governmental sector, industrial 
and workforce representatives is required in order to modulate the 
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set of rules so that the occupational and health promotional benefits 
outweighs the cost and risk factors [67].

Conclusion
Nanotechnology offers the ability to build large numbers of 

products that are incredibly powerful. Nanomedicines and nanodevices 
are in their early stages of development. The development processes are 
heavily interwined with biotechnology and information technology, 
making its scope very wide. Nanotechnology based products are capable 
of overcoming the limitations of traditional methods. But, the major 
challenges are yet to prevail over its toxicity, environmental hazards, 
production cost and accessibility to the un-reachable at far-off areas.
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