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Since 2005, cancer has become the leading cause of death in 
individuals under age 85 in the USA [1] and Prostate cancer (PCa) is the 
most common non-skin cancer diagnosed in the USA [2]. It is estimated 
that approximately 238,590 new cases and 29,720 prostate cancer-
related deaths will occur in the United States in 2013. Prostate cancer 
is now the second leading cause of cancer death in men, exceeded only 
by lung cancer. It accounts for 28% of all male cancers and 10% of male 
cancer-related deaths The PSA (prostate specific antigen) test has been 
used for initial diagnosis of disease, and monitored for recurrence after 
initial therapy and for prognosis of outcomes. Diagnosis of prostate 
has been substantially improved with the combined use of digital 
rectal examination, measurement of serum PSA levels and transrectal 
ultrasound [3]. Nearly 90% of men with prostate cancer were diagnosed 
with clinically localization [4]. Therefore, an early intervention to the 
disease could be more appropriate for such patients. 

Currently chemotherapy is a preferred modality in the treatment 
of prostate cancer, [5] for example; docetaxel and mitoxantrone 
are considered first-line chemotherapeutic options in patients 
with hormone-refractory prostate cancer (HRPC) [6]. But modest 
drug response and significant toxicity by conventional methods 
of administration limit their efficacy. For these issues, targeted 
cancer therapies offer significant therapeutic benefits over existing 
chemotherapy regimens since the drug is preferentially delivered to 
the cancer tissue. The side effects associated with chemotherapy can 
be minimized by targeted drug delivery. Nanoparticles have large 
flexibility in engineering design with sustained-release characteristics 
are the most promising candidates as drug delivery carriers. Over past 
a few years, researchers have developed different types of nanoparticles 
for treatment of cancer [7]. For targeting of prostate cancer, one such 
antigen is the prostate specific membrane antigen (PSMA) [8,9]. 

PSMA is a protein abundantly expressed on the surface of prostate 
cancer cells, metastatic disease and the hormone-refractory form. 
Anti-PSMA mAbs that bind the extracellular PSMA domain were 
used in targeting cells for prostate cancer therapy and imaging by 
several research groups [10-12]. Not limiting to antibody, aptamers, 
also known as chemical antibodies have recently been demonstrated 
as ideal candidates for molecular targeting applications. Many groups 
developed aptamers conjugated with nanoparticles for prostate cancer 
therapy and molecular imaging. For example, Chu et al. [13] used A9 
RNA aptamer: gelonin as conjugates to target and destroy prostate-
specific membrane antigen (PSMA)-positive PCa cells. Dhar et al. [14]

reported the use of A10 PSMA Apt conjugation with PLGA for targeted 
delivery of cisplatin to prostate cancer cells. Javier et al. [15] developed 
aptamer-based gold nanoparticles as contrast agents for imaging of 
PSMA (+) prostate cancer cells.

After we mentioned the strategy of targeting for prostate cancer 
above, we will discuss the treatment of prostate cancer. As low-risk 
clinically localized disease, the treatments of prostate cancer include 
watchful waiting, radical prostatectomy, external beam radiation 
therapy (RT) and interstitial RT (brachytherapy), freezing the prostate 
(cryotherapy), and androgen deprivation therapy (ADT). And for 
prostate cancer recurrence, the patients would be offered radiation 
therapy, androgen deprivation therapy (ADT), thermal therapy and 
others. Among of these, thermal therapy was very interesting and 
promising for prostate cancer locally therapy.

Thermal therapy (also called hyperthermia or thermotherapy) 
is a type of cancer treatment in which body tissue is exposed to high 
temperatures (up to 113°F). Research has shown that high temperatures 
can be used to damage and kill cancer cells without damage to normal 
tissue [16]. Thermal therapy may shrink tumors by killing cancer cells 
and damaging proteins and structures within the cells [17]. Several 
methods of hyperthermia are currently under study, including local, 
regional, and whole-body hyperthermia. Recently, nanoparticles for 
local hyperthermal show tremendous promise in the safe and effective 
transducers for cancer therapy. Ji et al. [18] summarized carbon 
nanotubes as carriers for drug delivery and thermal therapies. Kennedy 
et al. [19] reviewed gold-nanoparticle-mediated thermal therapies. 
Kumar and Mohammad [20] reported magnetic nanomaterials for 
controlled drug delivery and hyperthermia-based therapy. Here, 
we highlighted three types of nanoparticles (carbon nanotubes, gold 
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Abstract
Over the past several years, there has been increasing research and clinical interest in using nanotechnology 

for cancer therapy. Nanoparticle provides tremendous potential for future medical therapy. Besides targeting 
cancer cells, delivering and releasing drugs in a regulated manner, the specificity of nanoparticles is what makes 
thermal therapy as attractive as a cancer therapy. In this mini review, we discuss some of the recent advances of 
nanotechnology for thermal therapy of prostate cancer.
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nanoparticles, and magnetic nanoparticles) for prostate cancer thermal 
therapy.

Carbon nanotubes (CNT) as a class of nanomaterials holds great 
potential for various biomedical applications including extrinsically 
activated hyperthermia for prostate cancer therapy. Fisher et al. 
[21] demonstrated the capability of multiwalled carbon nanotubes 
(MWNTs) coupled with laser irradiation to enhance treatment of 
Human prostate cancer. Ghosh et al. [22] reported DNA-encases 
multiwalled carbon nanotubes (MWNTs) were used to safely eradicate 
prostate cancer in vivo following NIR irradiation of MWNTs. Despite 
these promising results, the toxicity of carbon nanotubes has been an 
important question in nanotechnology. CNTs from manufactured and 
combustion sources in the environment could have adverse effects on 
human health [23]. From this issue, gold nanoparticles are especially 
appealing due to bioinertness and biocompatibility for biomedical 
use. For thermal therapy of prostate cancer, Stern et al. [24] used laser 
activated gold nanoshells for selective prostate cancer thermal ablation. 
Gobin et al. [25] demonstrated elective photo-thermal destruction 
of prostate cancer upon application of prostate-specific EphrinA1-
conjugated gold nanoshells with the NIR laser irradiation. Normally, 
the size of gold nanoshells is more than 100 nm which is not suitable 
for in vivo application. Therefore, a gold nanorod is more attractive to 
researchers due to small size, easily surface function and with tunable 
plasmon resonance (SPR) in NIR region. As agents for prostate cancer 
therapy, Gormley et al. [26] evaluated gold nanorods conjugated 
with the cyclic RGD fK peptide for prostate cancer treatment. In 
addition, thermotherapy using magnetic nanoparticles represents 
another interesting area of magnetically mediated hyperthermia for 
prostate cancer treatment. Johannsen et al. [27] analyzed the effects of 
thermotherapy using magnetic nanoparticles combined with external 
radiation on prostate cancer and demonstrated this technique was 
feasible for prostate cancer treatment. Further, morbidity and quality 
of life were investigated during thermotherapy using magnetic 
nanoparticles in locally recurrent prostate cancer, the results showed 
interstitial heating using magnetic nanoparticles was feasible and well 
tolerated in patients [28]. These promising results show nanoparticles-
mediated thermal therapy can be as a minimally invasive method for 
hyperthermia treatment of prostate cancer.

In this mini review, we collected some examples where nanoparticles 
were employed to induce localized heating for thermal therapy of 
prostate cancer. We hope that readers will find them beneficial to their 
works including molecular targeting.
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