ISSN: 2161-0444 Open Access

# Nanomedicine in Drug Delivery: A Medicinal Chemistry Perspective

**Obaid Lateef\*** 

Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia

#### Introduction

Nanomedicine has revolutionized drug delivery by enabling targeted, efficient and controlled transport of therapeutic agents. In medicinal chemistry, nanocarriers such as liposomes, dendrimers, polymeric nanoparticles and metallic nanostructures offer unique physicochemical properties that enhance drug solubility, stability and bioavailability. These nanoscale systems improve pharmacokinetics and biodistribution, allowing drugs to accumulate in diseased tissues while minimizing systemic toxicity. Innovations in surface engineering have facilitated ligand-targeted delivery systems that home in on specific receptors, enhancing selectivity. For example, functionalizing nanoparticles with antibodies or peptides enables precise delivery to tumor cells or inflamed tissues. As a result, nanomedicine stands at the forefront of personalized therapy, particularly in oncology and chronic inflammatory conditions [1].

## **Description**

The integration of medicinal chemistry with nanotechnology has led to the rational design of drug-loaded nanocarriers optimized for specific therapeutic goals. Encapsulation protects labile drugs from enzymatic degradation and promotes sustained release over time. For hydrophobic drugs, nanoparticles can act as solubilizing platforms, increasing bioavailability and reducing dosing frequency. Additionally, stimuli-responsive nanocarriers activated by pH, temperature, or redox gradients offer controlled drug release in the tumor microenvironment or intracellular compartments. Notably, chemotherapeutic agents like doxorubicin and paclitaxel have been successfully reformulated using liposomal and polymeric nanoparticles, showing reduced toxicity and improved outcomes. The use of nanocarriers in delivering RNA-based therapeutics, such as siRNA and mRNA, has also gained attention due to their ability to protect genetic material and facilitate cellular uptake, as exemplified by lipid nanoparticle-based COVID-19 vaccines. Challenges in nanomedicine include reproducible large-scale synthesis, long-term biocompatibility and potential immunogenicity. Moreover, interactions with biological systems collectively referred to as the protein corona can alter biodistribution and efficacy. To address this, surface PEGylation and stealth coatings are commonly employed. Regulatory pathways for nanomedicine are evolving, with agencies like the FDA emphasizing characterization of particle size, charge and morphology. Medicinal chemists play a vital role in optimizing nanoparticle formulation, drug loading efficiency and release kinetics through tailored synthetic strategies [2-3].

Collaborative research across disciplines is essential to translate laboratory innovations into clinically approved nanomedicines that are safe, effective and

\*Address for Correspondence: Obaid Lateef, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia. E-mail: lateef.obaid@kau.sa Copyright: © 2025 Lateef O. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02 June, 2025, Manuscript No. mccr-25-171788; Editor assigned: 04 June, 2025, PreQC No. P-171788; Reviewed: 16 June, 2025, QC No. Q-171788; Revised: 23 June, 2025, Manuscript No. R-171788; Published: 30 June, 2025, DOI: 10.37421/2161-0444.2025.15.781

scalable. Nanomedicine has emerged as a transformative field in modern therapeutics, offering novel strategies to overcome the limitations of conventional drug delivery systems. From a medicinal chemistry standpoint, nanocarriers provide the opportunity to improve drug solubility, stability, bioavailability and tissue-specific targeting. By engineering nanoparticles, liposomes, dendrimers, micelles and polymeric systems, researchers can enhance pharmacokinetics and pharmacodynamics, leading to improved therapeutic efficacy with reduced systemic toxicity. The integration of nanotechnology with medicinal chemistry allows precise structural modification of drug molecules and carrier platforms, enabling controlled release, stimuli-responsive delivery and crossing of biological barriers such as the blood-brain barrier [4].

Furthermore, nanomedicine provides avenues to repurpose existing drugs, optimize poorly soluble or unstable molecules and design multifunctional delivery systems that combine therapeutic and diagnostic functions (theranostics). This perspective also highlights the importance of chemical interactions at the nano—bio interface, which dictate cellular uptake, distribution, metabolism and elimination. Advances in surface functionalization and ligand conjugation further contribute to active targeting, enhancing selectivity for diseased tissues such as tumors or inflamed sites. Medicinal chemistry plays a pivotal role in tailoring nanocarriers for specific drug classes, including anticancer agents, antimicrobials, peptides, nucleic acids and biologics. Understanding the interplay of molecular properties with nanostructure design is essential for optimizing therapeutic indices and minimizing adverse effects. In addition, regulatory and translational challenges underscore the need for rational design, safety evaluation and scalable manufacturing approaches to ensure clinical applicability [5].

#### Conclusion

Nanomedicine presents a transformative platform in drug delivery, bridging molecular design with targeted therapeutics. Through innovations in nanoparticle engineering and surface functionalization, medicinal chemistry contributes significantly to enhancing drug efficacy, reducing side effects and expanding treatment options for complex diseases. Continued efforts in material design, regulatory standardization and interdisciplinary collaboration will drive the next generation of nanotherapeutics into mainstream clinical use. As the field evolves, nanomedicine will remain a cornerstone of precision drug delivery and personalized medicine.

### **Acknowledgment**

None.

## **Conflict of Interest**

None.

Lateef O. Med Chem, Volume 15:03, 2025

## References

- Barenholz, Yechezkel Chezy. "Doxil® The first FDA-approved nano-drug: Lessons learned." J Cont Release 160 (2012): 117-134.
- Peer, Dan, Jeffrey M. Karp and Seungpyo Hong. "Nanocarriers as an emerging platform for cancer therapy." Nat Nanotechnol (2020): 61-91.
- $\,$  Xu, Wenjing. Functionalization of Nanostructures by Surface Engineering. UC 3.  $\,$  Riverside 2017.
- Sercombe, Lisa, Tejaswi Veerati and Fatemeh Moheimani. "Advances and challenges of liposome assisted drug delivery." Front Pharmacol 6 (2015): 286
- Pattni, Bhushan S., Vladimir V. Chupin and Vladimir P. Torchilin. "New developments in liposomal drug delivery." Chem Rev 115 (2015): 10938-10966.

How to cite this article: Lateef, Obaid. "Nanomedicine in Drug Delivery: A Medicinal Chemistry Perspective." Med Chem 15 (2025): 781.