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Introduction
De novo drug discovery and development is a challenging endeavor 

that usually takes between 10 to 20 years from the initial scientific 
innovation to a viable drug, showing overall success rates well below 
10% [1]. Thus, in the best case, medical needs are addressed decades after 
manifestation. Drug repositioning, i.e. identifying novel indications for 
customary drugs, or alternative uses for drug candidates which failed 
prior to registration, may offer valid alternatives for tackling unmet 
clinical needs [2]. Among the various strategies applied for rational 
approaches towards drug repositioning the comparative analysis of 
transcriptional response [3] as well as utilizing drug-protein networks 
derived from literature and data mining [4] have been applied. In either 
case, the challenge is to integrate data describing multiple levels: a 
specific molecular state (e.g. via Omics profiles), data on the disease 
phenotype, and data on the intervention strategy (e.g. drug and dosage 
information).

Confronted with this challenge, literature mining offers the unique 
opportunity to carry out the integration process needed for drug 
repositioning in one unifying framework, given that all the different 
data levels are dealt with in scientific publications. Thus, mining the 
scientific literature is a systematic approach to exploit the high quality 
information present therein, and offers significant support to drug 
discovery and drug repositioning [5]. Given the significant growth 
rate of the academic output a variety of methods assisting researches 
in keeping pace with this wealth of information have been devised [6]. 
The challenge of literature mining consists in translating unstructured, 
human readable free text into structured, machine readable 
information. Named Entity Recognition (NER) is one technique of 
particular importance in life science research. NER aims at classifying 

textual elements into predefined categories like for example genes, 
proteins, drugs or diseases [7]. Gene name normalization is successively 
used in order to link genes to unique identifiers such as NCBI Entrez 
GeneIDs [8]. Once a set of documents has been annotated using NER 
followed by gene name normalization, concept co-occurrence can be 
used to establish relationships among identified entities. As access to 
full text is typically limited in the scientific context, exploiting the NCBI 
curated PubMed annotations with Medical Subject Headings (MeSH) 
becomes more and more important [9]. The MeSH ontology represents 
a structured vocabulary of approximately 25,000 concepts including a 
fine-grained coverage of drugs and diseases.

A drug also indexed in the MeSH ontology is mycophenolate 
mofetil (MMF) mainly used to suppress the immune response after 
organ transplantation. MMF is a prodrug of mycophenolic acid (MPA), 
which is a potent and selective inhibitor of inosine-5’ monophosphate 
dehydrogenase (IMPDH) [10]. IMPDH is the rate-limiting enzyme in 
the de-novo pathway of guanosine synthesis. T- and B-lymphocytes 
rely on this pathway as their principal source of guanosine in contrast 
to other cell types that are capable of using the alternative salvage 
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Abstract
Background: High-throughput Omics technologies aimed at characterizing the molecular profile of diseases 

together with massive scientific literature on drugs and clinical trials opened the way for matching molecular profiles 
and drug mode of action in the realm of drug repositioning. We developed a computational analysis workflow for linking 
molecular targets, drugs, and diseases, and exemplified this approach for the immunosuppressive drug mycophenolate 
mofetil (MMF).

Methods and results: We first established a molecular MMF footprint consisting of deregulated Omics features 
from two transcriptomics datasets as well as from molecular features associated with MMF based on literature search 
methods. This footprint, consisting of 170 unique features, was used to identify diseases of relevance to MMF in the 
scientific literature using Medical Subject Heading (MeSH) terms. A disease enrichment score was calculated for each 
disease in the MeSH hierarchy, with highly ranked diseases being potentially associated to MMF. 

Diseases currently mentioned in clinical trials on MMF were used to validate our approach. The area under the 
curve was 0.78 when using the disease enrichment scores in order to discriminate between diseases currently in 
clinical trials and diseases not addressed by MMF with sensitivity and specificity values of 0.38 and 0.96 respectively. 
Among those diseases in clinical trials showing high scores were kidney diseases, multiple sclerosis, and systemic 
lupus erythematosus.

Conclusion: We identified a significant recovery of drug-associated diseases for the example case of MMF solely 
utilizing a molecular profile of the drug mode of action. The approach furthermore provided hypotheses on further 
diseases approachable by the given drug.
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pathway [12].  MPA therefore exhibits a selective cytostatic effect on 
lymphocytes. MMF is approved for the treatment of allograft rejection 
after renal, cardiac and liver transplantation [10]. Further clinical 
studies on other indications, including certain autoimmune diseases 
and lymphoma are currently ongoing.

In the present study, we outline a procedure of linking drugs, 
diseases, and molecular features based on Omics datasets and literature 
mining approaches with particular focus on the immunosuppressive 
drug mycophenolate mofetil. Diseases linked to MMF based on 
molecular features are discussed in the context of currently ongoing 
clinical trials on MMF.

Materials and Methods
Analysis concept

We utilized public domain Omics sources and literature mining 
for identifying specific molecular features and consecutively diseases 
associated with MMF. First a set of molecular features (molecular 
MMF footprint) was derived by combining results from MMF-specific 
literature mining and two transcriptomics profiling data sets specifically 
aimed at reflecting the impact of MMF on the level of protein coding 
gene expression. Based on this molecular MMF footprint a set of 
diseases was delineated by computing significant enrichment of disease 
terms associated to publications being linked to these features, again 
utilizing literature extraction methods. This resulting set of diseases 
is thus indirectly related to MMF via molecular features being targets 
or otherwise affected by MMF. Additionally a second disease list was 
derived by mining information available for published clinical trials 
utilizing MMF in treatment. Finally both disease lists, namely on the 
one hand derived on the basis of the molecular MMF footprint, and 
on the other hand already evaluated in clinical trials were compared 
for identifying the overlap of diseases for validating the veracity of 
our approach, but also to identify potential further diseases which, at 
least from the viewpoint of molecular profiles, might be addressable 
by MMF.

Molecular MMF footprint

Molecular features associated with MMF were extracted from 
two Omics datasets utilizing MMF in-vitro and in-vivo, as well as 
derived from the scientific literature available on MMF. One MMF 
associated Omics dataset was retrieved from the Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo) with 
the GEO dataset ID GSE13922, and the second dataset was retrieved 
from a compilation of expression data sets found at the connectivity 
map [12], specifically selecting transcriptomics profiles characterizing 
the effect of MMF on the cell line MCF-7. In general, identifying 
data sets specifically characterizing the cellular response to MMF is 
difficult. Most MMF associated studies available at Gene Expression 
Omnibus or Array Express are rooted in the transplant context, hence 
being afflicted with multiple therapeutic regimes involving a variety of 
drugs. The GEO data set GSE13922 summarizes the effects of MMF 
on the transcriptome of carotid endarterectomy samples collected from 
patients with carotid artery stenosis [13]. Given the strong cytostatic 
effect of MMF on T-cells, a reduction in plaque inflammation and 
consequently atherosclerosis and cardiovascular events was expected. 
In this study setting in total 20 patients suffering from carotid artery 
stenosis were either treated with a single dose of MMF or placebo. Two 
weeks after treatment start carotid endarterectomy was carried out and 
plaque specimens were collected for gene expression profiling using 
Illumina humanRef-8 v2.0 expression BeadArrays. We retrieved the 
raw data from GEO and identified genes deregulated between the MMF 

and the placebo group utilizing a t-test (p-value < 0.05) and the fold-
change criterion (> 0.6) on the log2 normalized data.

As second source a subset of samples from the connectivity 
map (CMAP) was used for deriving differentially expressed features 
linked to MMF. The connectivity map in its current version (build 
2.0) contains more than 7,000 expression profiles representing 1,309 
compounds and seeks to document the response of various cell lines to 
a wide variety of small molecules and drugs, including mycophenolate 
mofetil [12]. We extracted the raw data (Affymetrix Human Genome 
U133A platform) of 19 arrays of MMF treated cell lines. Consolidation 
of technical replicates (mean expression values) led to three biological 
MMF samples and three control samples for the breast cancer cell line 
MCF-7. After preprocessing the expression profiles a combination 
of fold-change (>0.6) and paired t-test (p-value < 0.05) was used to 
identify deregulated transcripts.

For the literature search also aimed at identifying MMF associated 
molecular features the Fast Automated Biomedical Literature Extraction 
(FABLE, http://fable.chop.edu) [14] tool combined with a methodology 
for identifying significantly enriched features was applied. In order to 
identify genes and proteins that are enriched in biomedical publications 
related to MMF the occurrence of a gene/protein in an article needs 
to be verified in the first place, i.e. a mapping between a list of unique 
identifiers (Ensemble GeneID or Entrez GeneSymbol) and a set of 
PubMed articles has to be established. Once this mapping is in hand, 
statistical enrichment analysis can be carried out.

The FABLE algorithm consists of two steps: First, a statistical 
classifier is used to train a probabilistic model which serves as basis 
for gene tagging, i.e. for identifying possible occurrences of a gene 
taking the textual context into account. Given such an occurrence 
exhibits a sufficient likelihood of actually representing a gene, this 
occurrence is normalized in a second step to the official Gene Symbol. 
This normalization step is based on gene synonym lists, which are 
compared to the predicted occurrence using both exact and relaxed 
pattern matching procedures. It has been shown that this approach 
is competitive to alternative methods such as standard information 
extraction techniques and direct pattern matching both in terms of 
precision and recall [14,15]. We applied this procedures to all papers 
retrieved from PubMed associated with “mycophenolate mofetil” 
(PubMed status as of March 2010).

The second literature analysis approach was based on a query for the 
MeSH term “mycophenolate mofetil” in the set of publications covered 
by the mapping from gene-2-pubmed as provided by NCBI (status 
as of April 2010, ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.
gz). The papers retrieved by this query represent the result set, while 
all the about 270,000 papers represented in the gene2pubmed.gz file 
depict the background population. In both sets the frequencies of 
MMF associated genes were determined, i.e. the number of articles 
mentioning a particular gene, and thus a Fisher’s exact test could be 
applied to determine the level of enrichment. A normalization step 
was successively introduced in order to account for papers reporting 
high numbers of genes for taking the total number of reported genes 
per publication into account when calculating gene frequencies. Genes 
with a p-value below 0.05 were considered as significantly associated to 
MMF based on the scientific literature.

The molecular MMF footprint was finally constructed by forming 
the union over the above described data sets, namely constructing 
a list of unique molecular features taking the two Omics sets (GEO, 
CMAP)  as well as the two literature datasets (FABLE, gene-2-pubmed) 
into account. The feature overlap was determined and the assignment 
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of features to molecular pathways using the PANTHER Classification 
System was performed [16].

Relating the molecular MMF footprint to diseases
For the genes listed in the molecular MMF footprint the assigned 

publications were determined again utilizing the NCBI-curated gene-
2-pubmed file. Each article in PubMed is annotated with a set of MeSH 
terms, among them disease terms or disease categories, which in turn 
allowed the calculation of a disease enrichment score (DEscore) for each 
disease mentioned within this set of publications: Disease enrichment 
for individual genes listed in the molecular MMF footprint was 
calculated based on Fisher’s exact tests. Enrichment scores for the four 
feature list (from the connectivity map CMAP, from the GEO data set 
GSE13922, from FABLE- or MeSH-based publications analysis) were 
successively combined into gene-disease matrices. For each feature list 
a matrix was computed in which each entry represents the enrichment 
p-value of a certain disease within the set of papers that are associated 
with a certain feature. In a second step, these gene-specific enrichments 
represented by p-values resulting from statistical testing were inverted 
and averaged for each disease yielding a score positively correlated with 
the relevance of the disease with respect to the given molecular feature 
set. For each molecular feature list this score was standardized, i.e. the 
mean was set to zero and the standard deviation was set to one. Scores 
obtained from the four lists were summed up for each disease thus 
obtaining the final DEscore. The ranked list of diseases based on the 
DEscore made up the disease profile of MMF based on the molecular 
MMF footprint. Diseases with the highest scores were on top of the list 
being most likely associated to MMF.

Diseases apparently related to MMF were furthermore extracted 
from information on clinical trials effectively using MMF. We used the 
database at www.clincialtrials.gov maintained by NIH, retrieved all trials 
related to MMF based on the search term “mycophenolate mofetil”, and 
extracted the associated disease terms from the accompanying MeSH 
term.

Finally, the list of diseases derived on the basis of the molecular 
MMF footprint was ranked based on the DEscore, and information 
whether the disease was effectively mentioned in at least one clinical 
trial on MMF was added. Sensitivity and specificity values of predicting 
whether a certain disease delineated on the basis of the molecular MMF 
feature list was already mentioned in a clinical trial was evaluated by 
using the DEscores at different cutoff values. The receiver operator 
characteristic (ROC) curve was generated and the area under the curve 
(AUC) was determined.

Diseases identified as adverse events of MMF based on the 
FDA approved drug label (http://www.gene.com/gene/products/
information/cellcept/) were flagged and excluded from further analyses.

Results
Molecular MMF footprint

The Omics data set (GEO GSE13922) comparing MMF treated 
patients suffering from carotid artery stenosis and respective controls 
identified 25 genes as differentially regulated. Correspondingly, 24 
deregulated genes were identified for the MMF treated tumor cell lines 
compared to untreated controls as provided in the CMAP dataset. 107 
genes were identified in the top 10 percent resulting from the FABLE 
literature mining approach, and the MeSH literature mining approach 
provided 30 genes with a p-value < 0.05 as being significantly related to 
MMF. In total 186 molecular features were found to be associated with 
MMF utilizing the four data sets, representing 170 unique molecular 
features.

Whereas the feature overlap between the two literature mining 
approaches was significant with almost 50% of features from the MeSH 
approach being also in the FABLE feature set, only two of the literature 
features were also found to be deregulated on the mRNA level in one of 
the omics datasets as given in Figure 1A.

On the level of molecular pathways the overall picture was different. 
19 out of 49 pathways were enriched in features of at least two data 
sets, with five pathways being of relevance in three of the four data sets 
(Figure 1B). These five pathways included ‘apoptosis signaling’, ‘EGF 
receptor signaling’, ‘inflammation mediated by chemokine and cytokine 
signaling’, ‘interleukin signaling’ and ‘T cell activation’. The pathway 
enrichment was calculated on the basis of the PANTHER classification 
system [16].

Table 1 holds those molecular features identified in at least two 
of the four datasets under study. Among them are the MMF targets 
IMP dehydrogenase 1 and 2 (IMPDH1 and IMPDH2). The most 

Figure 1: (A) shows the direct overlap of identified molecular features for the 
four data sets retrieved, (B) depicts the overlap of pathways following the 
pathway enrichment analysis.
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ABCB1 FABLE, MeSH ATP-binding cassette, sub-family B (MDR/TAP), 
member 1

ABCC2 FABLE, MeSH ATP-binding cassette, sub-family C (CFTR/MRP), 
member 2

C3 FABLE, GEO complement component 3

CD55 FABLE, MeSH CD55 molecule, decay accelerating factor for 
complement

CRP FABLE, MeSH C-reactive protein, pentraxin-related

CYP3A5 FABLE, MeSH cytochrome P450, family 3, subfamily A, polypeptide 
5

ICAM1 FABLE, MeSH intercellular adhesion molecule 1

IMPDH1 FABLE, MeSH IMP (inosine 5'-monophosphate) dehydrogenase 1

IMPDH2 FABLE, MeSH IMP (inosine 5'-monophosphate) dehydrogenase 2

IL10 FABLE, MeSH interleukin 10

IL6 FABLE, GEO interleukin 6 (interferon, beta 2)

NFKB1 FABLE, MeSH nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 1

TGFB1 FABLE, MeSH transforming growth factor, beta 1

UGT1A8 FABLE, MeSH UDP glucuronosyltransferase 1 family, polypeptide 
A8

UGT1A9 FABLE, MeSH UDP glucuronosyltransferase 1 family, polypeptide 
A9

UGT2B7 FABLE, MeSH UDP glucuronosyltransferase 2 family, polypeptide 
B7

Table 1: Provided are the Gene Symbol, the data set short name, and gene name 
of MMF associated molecular features identified in at least two out of four datasets.
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enriched Gene Ontology biological processes for these 16 features were 
‘regulation of immune response’ (GO:0050776, p-value = 4.24e-8) and 
‘inflammatory response’ (GO:0006954, p-value = 3.66e-7).

MMF disease ranking

For the in total 170 unique molecular features assigned to MMF 
associated diseases based on publication assignment were retrieved and 
statistically evaluated, leading to a disease enrichment score (DEscore). 
The distribution of DEscores, as depicted in Figure 2A, is given for the 
different MeSH hierarchy levels with the general hierarchy levels one and 
two showing much higher scores on average. MeSH terms, including 
disease concepts, are organized in a directed acyclic graph, which can 
also be represented as hierarchical structure with multiple occurring 
terms. In this structure, higher level terms (superterms) represent more 
general concepts while low level terms (subterms) are rather specific 
disease descriptions. Each subterm may belong to multiple superterms. 
For example, the term ‘HIV infections’ is a subterm of both superterms 
‘Virus Diseases’ and ‘Immune System Disease’.

Diseases already associated with MMF in the context of clinical 
trials received higher scores than those diseases currently not found 
in clinical trials using MMF. Figure 2B shows the number of enriched 
diseases per MeSH hierarchy level. The distribution largely resembles 
the overall distribution of disease terms in the MeSH hierarchy with 
most disease terms encountered on the intermediate levels of the 
hierarchy (levels 3 to 6).  Very generic disease terms on levels one and 
two, and very specific disease terms on levels seven and eight are less 
frequent.

Based on the DEscore a prediction was performed whether diseases 
found in clinical trials utilizing MMF can be identified based on the 
diseases associated with the molecular MMF footprint. Performing 
such a prediction resulted in an area under the curve of the resulting 
ROC curve of 0.78, as shown in Figure 3. At a DEscore cutoff of 2.5, 
sensitivity and specificity values were 0.38 and 0.96 respectively. This 
cutoff was used in order to identify highly ranked diseases already in 
clinical trials, but also to identify further diseases of potential relevance 
in the context of MMF.

Based on the FDA approved drug label a list of adverse events of 
MMF was manually curated. In a second step, this list was mapped 
to the diseases identified by our DEscore as relevant to MMF. About 
60% of these diseases were identified as being listed as adverse events 
of MMF and thus excluded from further analysis. 29 diseases on 

MeSH hierarchy levels three to five remained with DEscores above 2.5 
currently in clinical trials on MMF with the top 10 given in Table 2.

Discussion
The molecular MMF footprint presented in this work was derived 

by combining Omics data sets and literature mining results. Clearly 
evident is the lack of overlap on the individual feature level for the two 
Omics data sets. Next to the frequent finding of weak feature overlap 
even for homogeneous Omics studies the given data sets rest on highly 
heterogeneous sample material, being a cancer cell line on the one 
hand, and human samples in the realm of cardiovascular disease on the 
other hand. In contrast to the weak Omics feature overlap, the overlap 
of literature features is significant, indicating the consistency of the 
chosen literature mining methods (Fable and MeSH). Those feature 
found in more than one feature set are, in general, of direct relevance to 
inflammatory processes (IL6, NFKB1), are related to immune response 
(CRP, CD55, ICAM1, C3) or are involved in drug resistance (ABCB1, 
ABCC2). Not surprisingly, the primary target of MMF (IMPDH1, 
IMPDH2) is also recovered. The overlap on a functional level based 
on enriched pathways and biological processes was significant. Of the 
19 commonly found pathways the top five were all related to immune 
response. The functional characterization of the most relevant features 
that were found in at least two datasets also resulted in the GO biological 
process terms “regulation of immune response” and “inflammatory 
response” as the top ranked categories. Apparently on a functional level 
the mode of action of MMF is correctly mirrored by the molecular 
MMF footprint.

For the link between molecular features and diseases we decided 
to use MeSH term assignments as well as gene-2-pubmed relations 

disease term DEscore
HIV infections 11.46
kidney diseases 9.19

renal insufficiency 7.68

liver cirrhosis 7.64
gastroenteritis 7.26

demyelinating autoimmune diseases, CNS 7.19

multiple sclerosis 6.92

hepatitis 6.21

arthritis 6.17

breast diseases 5.65

Table 2: Highly ranked diseases currently in clinical trials utilizing MMF.

Figure 2: Disease Enrichment score (DEscore) distribution. (A) depicts 
the distribution of DEscores for each MeSH hierarchy level (1-8) while also 
distinguishing between diseases present / absent in MMF related clinical trials. 
The vertical line represents the overall mean. (B) represents the number of 
enriched diseases per MeSH hierarchy level, while discriminating for diseases 
found in MMF-associated clinical trials and others.
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provided by NCBI. Both mappings, namely genes to articles and MeSH 
terms to articles represent high quality annotations with the further 
benefit of the clearly defined structure in the MeSH ontology. This 
ontology allows for an easy mapping of diseases to scientific articles as 
well as clinical trials [17]. 

In the calculation of the DEscore we had to account for two issues, 
namely (i) the degree of annotation of single genes in the scientific 
literature and (ii) the different sizes of molecular feature lists. Some 
genes are well studied, while other genes are only mentioned in 
a handful of publications so far. This fact was also described and 
quantified in a publication by Kemmer and colleagues reporting the 
Gene Characterization Index [18]. As a consequence, when retrieving a 
set of articles related to a set of genes, the article set is likely to be biased 
towards the highly discussed genes. Thus, when identifying enriched 
diseases within this set, they will not reflect the whole set of features, 
but rather the well-studied genes and proteins. We therefore extracted 
sets of articles related to individual genes instead of sets of genes, and 
identified enriched diseases for each article set. To obtain a measure 
for the relevance of a disease with respect to a whole set of features, we 
averaged over the individual gene-specific enrichment scores.

The feature lists upon which the consensus feature set is based are 
of different sizes. More related articles will naturally be identified when 
querying PubMed with a larger set of features as was the case for our 
FABLE literature list holding 172 features as compared to the two Omics 
lists holding 24 and 25 features respectively. Thus, when retrieving a 
set of articles related to the consensus feature set, this article set would 
be biased towards FABLE, and consequently the diseases within this 
set would rather reflect the FABLE features than the consensus feature 
set as a whole. We therefore handled each feature list individually 
thus obtaining four different enrichment scores for each disease. To 
assure equal contributions from each list the obtained scores were 
standardized before they were summed up to obtain the final Disease 
Enrichment score (DEscore).

One result provided by the analysis of the calculated DEscore 
distribution per ontology level is that rather generic disease terms were 
typically of higher significance than more specific ones. Given that 
the structure of the ontology was taken into account for significance 
calculation, this shift towards general disease concepts was not a 
methodological bias but rather indicated that MMF was frequently 
discussed in a non-specific disease context, e.g. kidney diseases. Across 
all levels of the MeSH ontology, diseases currently under investigation in 
associated MMF clinical trials generally obtained higher DEscores than 
diseases currently not mentioned in MMF clinical trials. This strong 
correlation between our DEscore and the presence of an indication in 
clinical trials was also reflected in the obtained AUC of 0.78. 

After thresholding the DEscore the remaining diseases were split 
into known indications and novel diseases of relevance to MMF. Next to 
kidney diseases, in part reflecting end stage renal disease and thus also 
MMF treatment in the context of renal transplantation, we identified 
systemic lupus erythematosus, multiple sclerosis, and arthritis among 
the top ranked diseases based on our DEscore. The top ranked category 
HIV may result from a co-occurrence in the transplant setting, on 
the other hand is the combined impact of MMF and highly active 
antiretroviral therapy using abacavir or efavirenz currently under 
investigation [19] (clinical trial NCT00021489).

Among those diseases showing the highest DEscores currently 
not in clinical trials on MMF are Inflammatory Bowel Disease (IBD), 
Crohn’s disease, and Celiac disease. For IBD a series of steroid-based 
therapies are commonly used whereas in Crohn’s disease the anti-

inflammatory drug meslazine is one of the treatment options. Apart 
from these intestinal anti-inflammatory agents, immunomodulatory 
regimes based on azathioprine, prednisone or tacrolimus are frequently 
applied. The use of MMF, in contrast, has only been considered so 
far for patients who are refractory or intolerant to conventional first-
line agents such as mesalazine steroids [20].  The viability of MMF in 
this context is controversially discussed. In specific cases it has been 
described as safe, well tolerated and efficient [21] while others consider 
it to be inappropriate [22]. From the molecular feature set addressed 
by MMF such therapeutic approaches seem reasonable although 
the side effects may outweigh the benefits of the treatment. Further 
investigations pursuing a personalized approach are necessary to 
identify the exact circumstances under which a beneficial application 
of MMF is possible.

The fact that we currently cannot automatically distinguish whether 
a disease with a high DEscore could be a novel indication for MMF 
treatment or whether it is merely associated or even an adverse event 
description is a limitation of our approach. With the ranked disease list 
in hand clinical expert knowledge is needed for result interpretation. 
The challenge to be met consists in automatically distinguishing 
different types of co-occurrences of drugs, diseases and molecular 
features. Indeed, there are methods for this exact type of task, known 
as “relations mining” [23,24], but all of them suffer from elevated false-
positive and false-negative rates. Our current approach may well serve 
as starting point for more sophisticated literature mining approaches in 
the context of drug repositioning.
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