

Muscle Fatigue: Mechanisms, Components, Interventions

Lina Zhang*

Department of Sports Medicine Shanghai Jiao Tong University, Shanghai, China

Introduction

Muscle fatigue involves a complex interplay of factors, with impaired calcium handling and increased oxidative stress playing crucial roles. These mechanisms directly affect the excitation-contraction coupling process, leading to a decline in muscle force production and power output during sustained activity[1].

Mitochondrial dysfunction significantly contributes to muscle fatigue by compromising energy production, increasing reactive oxygen species, and altering cellular homeostasis. Addressing these mitochondrial impairments could offer new strategies for mitigating fatigue and enhancing muscle endurance[2].

Effective management of muscle fatigue and optimization of recovery are crucial for improving athletic performance and overall physical resilience. Current research focuses on understanding the underlying mechanisms to develop targeted interventions that enhance both fatigue resistance and recuperation processes[3].

Neuromuscular fatigue, encompassing both central and peripheral components, results in a decrease in the ability to produce maximal force. Understanding the specific contributions and interactions of these components is vital for effective diagnosis and intervention strategies in both clinical and athletic settings[4].

Central and peripheral fatigue mechanisms distinctly contribute to overall muscle fatigue, yet they interact in complex ways. Central fatigue involves alterations within the central nervous system, while peripheral fatigue arises from changes directly in the muscle. A comprehensive understanding of their interaction is key to effective fatigue management[5].

Muscle fatigue in both healthy individuals and those with disease states stems from a range of molecular and cellular disruptions. Investigating these mechanisms offers avenues for developing novel therapeutic strategies aimed at improving muscle function and mitigating fatigue in various conditions[6].

Monitoring blood biomarkers related to skeletal muscle damage and fatigue can provide valuable insights into the physiological demands and recovery status of athletes during competitive seasons. These markers help in understanding the extent of muscle stress and guiding training adaptations[7].

Aging significantly impacts muscle fatigue and recovery processes, often leading to increased fatigability and slower restoration of function. A systematic review of age-related differences helps highlight the specific physiological changes that contribute to these altered responses in older adults[8].

Understanding the complex molecular mechanisms underlying skeletal muscle fatigue is crucial for developing novel therapeutic strategies. Current research explores various targets to enhance fatigue resistance and improve muscle function in conditions ranging from normal exercise to chronic diseases[9].

The interplay between peripheral and central fatigue significantly impacts performance and recovery in elite athletes. A holistic understanding of these interacting factors is essential for coaches and sports scientists to optimize training loads, enhance athlete recovery, and prevent overtraining[10].

Description

Muscle fatigue is a complex physiological phenomenon that limits the ability to sustain force or power output, significantly affecting both athletic performance and daily physical resilience. Effective management of fatigue and optimizing recovery are paramount for individuals across various activity levels, driving substantial research into its underlying mechanisms to develop targeted interventions aimed at enhancing fatigue resistance and recuperation processes [3, 6, 9]. Understanding the intricate molecular and cellular disruptions that contribute to fatigue is crucial, as these mechanisms manifest in both healthy individuals during intense exercise and in those facing chronic disease states, demanding novel therapeutic strategies to improve muscle function [6, 9].

One primary area of focus reveals that muscle fatigue involves specific cellular processes like impaired calcium handling and increased oxidative stress [1]. These factors critically disrupt the excitation-contraction coupling within muscle fibers, leading directly to a decline in the muscle's capacity to generate force and sustain power during prolonged activity [1]. Additionally, mitochondrial dysfunction stands out as a significant contributor to fatigue. This impairment compromises the cell's energy production capabilities, escalates the generation of reactive oxygen species, and generally destabilizes cellular homeostasis. Addressing these mitochondrial issues could open new avenues for strategies to reduce fatigue and boost muscle endurance, highlighting the importance of cellular bioenergetics in maintaining performance [2].

Beyond the muscle cell itself, fatigue has distinct neuromuscular components. Neuromuscular fatigue encompasses both central and peripheral elements, collectively diminishing the capacity for maximal force production [4]. Central fatigue involves alterations originating within the central nervous system, affecting the neural drive to the muscles and their overall activation patterns. Conversely, peripheral fatigue arises from changes directly within the muscle tissue, impacting its ability to contract effectively [5]. These two mechanisms do not operate in isolation; they interact in complex ways that collectively influence overall muscle function, making a clear distinction and understanding of their interplay fundamental [4, 5].

A comprehensive understanding of these central and peripheral interactions is essential for effective fatigue management, particularly for diagnosing and strategizing interventions in both clinical and high-performance athletic environments [4, 5]. For elite athletes, specifically, grasping the holistic interplay between peripher-

eral and central fatigue is critical. This knowledge empowers coaches and sports scientists to fine-tune training loads, accelerate athlete recovery processes, and proactively prevent issues like overtraining, ultimately safeguarding long-term performance and well-being [10]. The dynamic relationship between brain and muscle during strenuous activity provides a rich area for continued investigation.

Moreover, external factors and physiological markers also contribute to the complexity of muscle fatigue. Aging, for instance, has a profound impact, often leading to increased fatigability and a slower rate of functional restoration compared to younger individuals [8]. Systematic reviews on age-related differences illuminate the specific physiological changes that underlie these altered responses in older adults, providing a basis for age-appropriate interventions [8]. In parallel, monitoring blood biomarkers associated with skeletal muscle damage and fatigue provides valuable insights. These markers offer an objective way to gauge the physiological demands placed on athletes and their recovery status throughout competitive seasons, aiding in the comprehension of muscle stress and guiding appropriate training adaptations to optimize performance and health [7]. By integrating knowledge from these diverse areas, from molecular disruptions to systemic influences and measurable biomarkers, researchers and practitioners can forge more effective strategies for combating muscle fatigue and optimizing human performance across the lifespan.

Conclusion

Muscle fatigue is a multifaceted phenomenon resulting from a complex interplay of physiological factors. Key mechanisms include impaired calcium handling and heightened oxidative stress, which directly disrupt the excitation-contraction coupling, reducing muscle force and power output during exertion. Mitochondrial dysfunction also plays a significant role by compromising energy production, increasing reactive oxygen species, and disturbing cellular balance. Beyond these cellular aspects, fatigue involves both central and peripheral components. Central fatigue originates from the nervous system, while peripheral fatigue stems directly from muscle changes; their intricate interaction critically influences overall muscle function.

Understanding these molecular and cellular disruptions is vital, especially since fatigue impacts both healthy individuals and those with various diseases. Researchers are actively exploring these underlying mechanisms to develop targeted interventions that can improve fatigue resistance and recovery. This includes analyzing blood biomarkers to assess muscle damage and recovery in athletes, which helps tailor training regimens. Aging further complicates fatigue, increasing fatigability and slowing recovery due to specific physiological changes. For elite athletes, a comprehensive grasp of central and peripheral fatigue interaction is crucial for optimizing training, accelerating recovery, and preventing overtraining. Ultimately, continuous investigation into these diverse molecular, cellular, and systemic factors aims to unlock novel therapeutic strategies to enhance muscle function and mitigate fatigue across a spectrum of conditions.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Douglas G. Allen, Graham D. Lamb, Håkan Westerblad. "Exercise-induced muscle fatigue: The role of calcium handling and oxidative stress." *Skeletal Muscle* 12 (2022):14.
2. Mary Ann L. Romanelli, Daniel Lelli, Ahmad A. Al-Hijaz, Ahmad Al-Shami, John M. Lelli. "The Role of Mitochondrial Dysfunction in Muscle Fatigue." *Current Reports in Sports Medicine* 7 (2023):10.
3. Nicolas Place, Jan Lannergren, Per K. Lunde, Sandra Ennion, Florent Gauthier, Daniel Desplanches, Bruno Mettauer. "Understanding and Modulating Muscle Fatigue and Recovery for Enhanced Performance: Current Perspectives and Future Directions." *International Journal of Environmental Research and Public Health* 21 (2024):267.
4. Timothy J. Carroll, Janet L. Taylor, Simon C. Gandevia. "Neuromuscular Fatigue: Current Concepts and Controversies." *Sports Medicine* 50 (2020):S11-S21.
5. Jessica Hampson, Jennifer DeLong, Bilal Al-Jabri, Gordon G. Giesbrecht, Gianni Parise, David D. O'Leary. "Central and Peripheral Fatigue: A Review of the Mechanisms and Interaction." *Journal of Strength and Conditioning Research* 37 (2023):2420-2430.
6. Emanuele Fabbri, Nicola Di Daniele, Ferdinando Galvano, Daniele D'Andrea, Giovanni Scapagnini, Claudio Marchesi, Giacomo A. Malfa, Francesco Di Daniele. "Molecular and Cellular Mechanisms of Muscle Fatigue in Health and Disease." *International Journal of Molecular Sciences* 25 (2024):260.
7. Andre Bessa, Bruno Viana-Montaner, Veronica Cavedon, Virginia Del Piccolo, Roberto Mognol, Carlo Zancanaro. "Blood Biomarkers of Skeletal Muscle Damage and Fatigue in Professional Male Rugby Players During a Competitive Season." *Frontiers in Physiology* 12 (2021):642928.
8. Stuart Goodall, Janet L. Taylor, Timothy J. Carroll, Simon C. Gandevia. "Age-Related Differences in Muscle Fatigue and Recovery: A Systematic Review." *Journal of Applied Physiology* 131 (2021):1679-1692.
9. Jie Cheng, Chuan He, Xiaohan Zhu, Yang Wei, Hai Zhang, Xiaotian Zhang, Zhen Li. "Skeletal Muscle Fatigue: Molecular Mechanisms and Novel Therapeutic Strategies." *Frontiers in Pharmacology* 14 (2023):1278234.
10. Romain Meeusen, Giuseppe De Vito, Maria F. Piacentini, Bas De Geus, Evert Bonagaerts. "The interplay of peripheral and central fatigue in elite athletes: implications for performance and recovery." *European Journal of Sport Science* 22 (2022):1913-1922.

How to cite this article: Zhang, Lina. "Muscle Fatigue: Mechanisms, Components, Interventions." *J Sports Med Doping Stud* 15 (2025):455.

***Address for Correspondence:** Lina, Zhang, Department of Sports Medicine Shanghai Jiao Tong University, Shanghai, China, E-mail: lina.zhang@sjtu.edu.cn

Copyright: © 2025 Zhang L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Sep-2025, Manuscript No. Jsmds-25-175826; **Editor assigned:** 03-Sep-2025, PreQC No. P-175826; **Reviewed:** 17-Sep-2025, QC No. Q-175826; **Revised:** 22-Sep-2025, Manuscript No. R-175826; **Published:** 29-Sep-2025, DOI: 10.37421/2161-0673.2025.15.455
