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Editorial 
Bio-inspired computation takes inspiration from biological systems 

in order to perform some form of computation (such as finding a 
solution to a problem). Examples include evolutionary algorithms; 
swarm intelligence (for example, ant colony optimisation and particle 
swarm optimisation); artificial life; and artificial neural networks. 
Usually for these systems the underlying assumption is that time is 
linear (i.e., non-branching, where ‘branching’ time is a term used by 
concurrent systems meaning that two or more different courses of 
actions diverge). For example, the possibility of jumping ahead in time, 
or returning to a past computation, is usually not considered desirable. 
In addition, the environment and task in which the computational 
task takes place is usually considered within a single world rather than 
multiple worlds where computation takes place either in some pre-
determined order or in parallel.

The purpose of this article is to draw attention to the further 
improvements that can arise if one considers alternative scenarios 
that make use of multiple worlds and systems where branching time is 
actively employed i.e. either the agents are transported from one world 
to another, or information is communicated from an agent in one 
world to another agent in a different world. This article will also draw 
attention to a new multiple world scenarios that leads to a significant 
improvement over existing approaches in the quality of the solution 
found.

Multiple world simulations are a standard requirement for many 
types of problems. These are problems where the fitness of an agent (or 
agents) needs to be evaluated by running a simulation. For example, 
for the Santa Fe Trail artificial ant problem, a standard benchmark 
used to evaluate evolutionary programming algorithms, each agent 
in the population being evolved has to have its behaviour evaluated 
by running a simulation in a world containing the Santa Fe Trail and 
the agent by itself, since the process of the agent eating food modifies 
the world. The evaluation would be invalidated if further agents were 
added to the world since the food counts and/or which food has been 
eaten would no longer necessarily be correct for all agents.

Figure 1 illustrates the way a typical evolutionary algorithm 
works for a problem that requires multiple world simulations to 
be processed. At the top of Figure 1 is the typical scenario for a 
sequential implementation and at the bottom the scenario for a parallel 
implementation. Both show the first two generations for a small 
population of seven agents. The square boxes represent the simulated 
worlds where the agent’s performance at traversing the Santa Fe Trail is 
evaluated (these are labelled, for example, as W1:1 for the first world in 
Generation 1). Each box has a single agent depicted with a bug shape; 
in the figure, these have traversed along the trail with varying degrees 
of success. In between the two sets of worlds is shown the time lines 
that represent the order that events occur as witnessed by an observer 
external to the worlds. A circle represents an event (when a change 
occurs where a simulation might start, say, or an agent might transfer 

to another world). A vertical line represents standard linear time where 
the agents in the world continue their processing without transferring 
to or communicating with another world. The solid lines that cross the 
vertical time lines represent when an agent directly transfers between 
worlds. The dashed lines indicate when information is being transferred 
rather than the agent itself.

The figure depicts the case of a typical evolutionary algorithm where 
crossover and cloning operations occur (mutation can be considered 
an operation that, although changing the behaviour of an agent, has 
no effect on the time lines). A cloning operation, on the other hand, 
causes an agent to directly transfer from one world to another (e.g. in 
the figure, this occurs from world W1:4 to worlds W2:1 and W2:6). 
A crossover operation causes information to be transferred from 
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Figure 1: Time line diagrams for sequential (at the top) and parallel (at the 
bottom) evolutionary algorithms that require multiple world simulations in order 
to solve the Santa Fe Trail problem.
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agents in two parent worlds to create a new child agent–this occurs, for 
example, for parent worlds W1:2 and W1:6 to child world W2:4.

For the sequential scenario, each simulation needs to be run (from 
time t=0 to some termination time t=T1). To the external observer, the 
processing occurs in a series of downward steps since it only ever occurs 
in a single world at any one time. The parallel scenario, on the other 
hand is able to process the simulated worlds simultaneously (although 
in reality the times to run the simulations may vary, some taking 
longer than others to complete requiring more complex management 
of available processors than the theoretical case shown in the figure).

Clearly, an effective means for managing multiple worlds and 
branching time for evolution of simulation type problems can 
potentially lead to reductions in resources (such as time) required to 
find satisfactory solutions. But recent research has brought to light how 
the use of multiple worlds and branching time can also substantially 
improve the quality of the solutions found.

Headleand and Teahan have recently described three new 
evolutionary algorithms–Grammatical Herding (‘GH’), a swarm based 
method that takes inspiration from the herding behaviour of horses to 
generate program-based solutions to problems [2]; seeded Grammatical 
Evolution (‘GH seeded GE’), a method that uses GE [3,4] to seed the 
initial population prior to GE, again in order to generate a program-
based solution [1]; and Template Based Evolution (TBE), a genetic 
evolution algorithm that evolves behaviour (rather than programs) 
for embodied situated agents whose fitness is tested implicitly through 
repeated trials in a world [5]. The scenario for GH seeded GE is shown 

on the top in Figure 2. Two worlds are shown–the left world where the 
GH algorithm is used to evolve the population of agents, and the right 
world where GE is used.

For simulation type problems such as the Santa Fe Trail problem, 
the scenarios for these algorithms are similar to that shown in Figure 
1, but this has been simplified for visualisation purposes in Figure 2 as 
a single square. (We can abstractly consider this ‘superset’ of worlds as 
consisting of agents that are traversing a landscape (world) of possible 
program solutions; however, in reality, the implementation must treat 
each agent-based simulation separately in its own world for reasons 
stated above).

For the GH seeded GE algorithm shown at the top of Figure 2, there 
are two separate time lines for the two worlds, one for the world where 
GH is controlling the behaviour of the agents (represented by the horse 
shapes in the diagram), and one for the GE world (where the agents 
are represented by person shapes). The GH simulation starts at time 
t=0, then at some termination time t=T1 the best performing agents 
will then transfer directly without change to start the GE simulation at 
time t=0. (This is shown by the magenta lines at the top of the diagram). 
These agents will run until some termination time t=T2. Note that the 
notion of branching time is clear in this scenario. Both the GH and 
GE worlds could continue with their processing and there is nothing 
stopping a later transferral of agents between worlds, although this has 
not been implemented for the method described in [1]. It is important 
to note that the GH seeded GE algorithm was able to find a solution for 
the Santa Fe Trail problem significantly better than the current state of 
the art published in [4].

A further scenario we will also investigate is shown at the bottom of 
Figure 2. In this case, we have added a further world where we propose 
first using TBE to evolve the herding behaviour of the GH agents. Once 
this has run and well-performing rules of behaviour have been found, 
this information will be transferred to the GH world to hopefully 
improve the effectiveness of the swarm-based herding agents. These 
agents will then be transmitted to the GE world by seeding the initial 
population for that world.

Conclusion
Scenarios involving multiple worlds and different branching 

time configurations provide a virtually untapped resource for future 
research into bio-inspired computation. These scenarios can be useful 
for helping to design improved parallel algorithms, and have the 
potential to produce more effective solutions to problems.
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GE on the left [1], and TBE-GH seeded GE on the right. (GH=Grammatical 
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