
Volume 6(3): 1000e104
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Research Article Open Access

Teahan, J Comput Sci Syst Biol 2013, 6:3
DOI: 10.4172/jcsb.1000e104

Editorial Open Access

Editorial
Bio-inspired computation takes inspiration from biological systems

in order to perform some form of computation (such as finding a
solution to a problem). Examples include evolutionary algorithms;
swarm intelligence (for example, ant colony optimisation and particle
swarm optimisation); artificial life; and artificial neural networks.
Usually for these systems the underlying assumption is that time is
linear (i.e., non-branching, where ‘branching’ time is a term used by
concurrent systems meaning that two or more different courses of
actions diverge). For example, the possibility of jumping ahead in time,
or returning to a past computation, is usually not considered desirable.
In addition, the environment and task in which the computational
task takes place is usually considered within a single world rather than
multiple worlds where computation takes place either in some pre-
determined order or in parallel.

The purpose of this article is to draw attention to the further
improvements that can arise if one considers alternative scenarios
that make use of multiple worlds and systems where branching time is
actively employed i.e. either the agents are transported from one world
to another, or information is communicated from an agent in one
world to another agent in a different world. This article will also draw
attention to a new multiple world scenarios that leads to a significant
improvement over existing approaches in the quality of the solution
found.

Multiple world simulations are a standard requirement for many
types of problems. These are problems where the fitness of an agent (or
agents) needs to be evaluated by running a simulation. For example,
for the Santa Fe Trail artificial ant problem, a standard benchmark
used to evaluate evolutionary programming algorithms, each agent
in the population being evolved has to have its behaviour evaluated
by running a simulation in a world containing the Santa Fe Trail and
the agent by itself, since the process of the agent eating food modifies
the world. The evaluation would be invalidated if further agents were
added to the world since the food counts and/or which food has been
eaten would no longer necessarily be correct for all agents.

Figure 1 illustrates the way a typical evolutionary algorithm
works for a problem that requires multiple world simulations to
be processed. At the top of Figure 1 is the typical scenario for a
sequential implementation and at the bottom the scenario for a parallel
implementation. Both show the first two generations for a small
population of seven agents. The square boxes represent the simulated
worlds where the agent’s performance at traversing the Santa Fe Trail is
evaluated (these are labelled, for example, as W1:1 for the first world in
Generation 1). Each box has a single agent depicted with a bug shape;
in the figure, these have traversed along the trail with varying degrees
of success. In between the two sets of worlds is shown the time lines
that represent the order that events occur as witnessed by an observer
external to the worlds. A circle represents an event (when a change
occurs where a simulation might start, say, or an agent might transfer

to another world). A vertical line represents standard linear time where
the agents in the world continue their processing without transferring
to or communicating with another world. The solid lines that cross the
vertical time lines represent when an agent directly transfers between
worlds. The dashed lines indicate when information is being transferred
rather than the agent itself.

The figure depicts the case of a typical evolutionary algorithm where
crossover and cloning operations occur (mutation can be considered
an operation that, although changing the behaviour of an agent, has
no effect on the time lines). A cloning operation, on the other hand,
causes an agent to directly transfer from one world to another (e.g. in
the figure, this occurs from world W1:4 to worlds W2:1 and W2:6).
A crossover operation causes information to be transferred from

*Corresponding author: William J Teahan, School of Computer Science, Bangor
University, Bangor, Wales, UK, E-mail: w.j.teahan@bangor.ac.uk

Received June 06, 2013; Accepted June 10, 2013; Published June 14, 2013

Citation: Teahan WJ (2013) Multiple Worlds and Branching Time for Bio-inspired
Computation. J Comput Sci Syst Biol 6: e104. doi:10.4172/jcsb.1000e104

Copyright: © 2013 Teahan WJ. This is an open-access article distributed under
the terms of the Creative Commons Attribution License,which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Multiple Worlds and Branching Time for Bio-inspired Computation
William J Teahan*

School of Computer Science, Bangor University, Bangor, Wales, UK

Figure 1: Time line diagrams for sequential (at the top) and parallel (at the
bottom) evolutionary algorithms that require multiple world simulations in order
to solve the Santa Fe Trail problem.

Journal of
Computer Science & Systems BiologyJo

ur
na

l o
f C

om
pu

ter Science & System
s Biology

ISSN: 0974-7230

Citation: Teahan WJ (2013) Multiple Worlds and Branching Time for Bio-inspired Computation. J Comput Sci Syst Biol 6: e104. doi:10.4172/
jcsb.1000e104

Volume 6(3): 1000e104
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Page 2 of 2

agents in two parent worlds to create a new child agent–this occurs, for
example, for parent worlds W1:2 and W1:6 to child world W2:4.

For the sequential scenario, each simulation needs to be run (from
time t=0 to some termination time t=T1). To the external observer, the
processing occurs in a series of downward steps since it only ever occurs
in a single world at any one time. The parallel scenario, on the other
hand is able to process the simulated worlds simultaneously (although
in reality the times to run the simulations may vary, some taking
longer than others to complete requiring more complex management
of available processors than the theoretical case shown in the figure).

Clearly, an effective means for managing multiple worlds and
branching time for evolution of simulation type problems can
potentially lead to reductions in resources (such as time) required to
find satisfactory solutions. But recent research has brought to light how
the use of multiple worlds and branching time can also substantially
improve the quality of the solutions found.

Headleand and Teahan have recently described three new
evolutionary algorithms–Grammatical Herding (‘GH’), a swarm based
method that takes inspiration from the herding behaviour of horses to
generate program-based solutions to problems [2]; seeded Grammatical
Evolution (‘GH seeded GE’), a method that uses GE [3,4] to seed the
initial population prior to GE, again in order to generate a program-
based solution [1]; and Template Based Evolution (TBE), a genetic
evolution algorithm that evolves behaviour (rather than programs)
for embodied situated agents whose fitness is tested implicitly through
repeated trials in a world [5]. The scenario for GH seeded GE is shown

on the top in Figure 2. Two worlds are shown–the left world where the
GH algorithm is used to evolve the population of agents, and the right
world where GE is used.

For simulation type problems such as the Santa Fe Trail problem,
the scenarios for these algorithms are similar to that shown in Figure
1, but this has been simplified for visualisation purposes in Figure 2 as
a single square. (We can abstractly consider this ‘superset’ of worlds as
consisting of agents that are traversing a landscape (world) of possible
program solutions; however, in reality, the implementation must treat
each agent-based simulation separately in its own world for reasons
stated above).

For the GH seeded GE algorithm shown at the top of Figure 2, there
are two separate time lines for the two worlds, one for the world where
GH is controlling the behaviour of the agents (represented by the horse
shapes in the diagram), and one for the GE world (where the agents
are represented by person shapes). The GH simulation starts at time
t=0, then at some termination time t=T1 the best performing agents
will then transfer directly without change to start the GE simulation at
time t=0. (This is shown by the magenta lines at the top of the diagram).
These agents will run until some termination time t=T2. Note that the
notion of branching time is clear in this scenario. Both the GH and
GE worlds could continue with their processing and there is nothing
stopping a later transferral of agents between worlds, although this has
not been implemented for the method described in [1]. It is important
to note that the GH seeded GE algorithm was able to find a solution for
the Santa Fe Trail problem significantly better than the current state of
the art published in [4].

A further scenario we will also investigate is shown at the bottom of
Figure 2. In this case, we have added a further world where we propose
first using TBE to evolve the herding behaviour of the GH agents. Once
this has run and well-performing rules of behaviour have been found,
this information will be transferred to the GH world to hopefully
improve the effectiveness of the swarm-based herding agents. These
agents will then be transmitted to the GE world by seeding the initial
population for that world.

Conclusion
Scenarios involving multiple worlds and different branching

time configurations provide a virtually untapped resource for future
research into bio-inspired computation. These scenarios can be useful
for helping to design improved parallel algorithms, and have the
potential to produce more effective solutions to problems.
References

1. Headleand C, Teahan WJ (2013) “Swarm based population seeding of
Grammatical Evolution”. J Comput Sci Syst Biol.

2. Headleand C, Teahan WJ (2013) “Grammatical Herding”. J Comput Sci Syst
Biol 6: 43-47.

3. O’Neill M, Ryan C (2003) Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer.

4. Georgiou L, Teahan WJ (2011) “Constituent Grammatical Evolution”. Proc. Int.
Joint Conf on AI (IJCAI): Barcelona, Spain.

5. Headleand C, Teahan WJ (2013) “Template Based Evolution”. EcoMASS
Workshop, Genetic and Evolutionary Computation Conference (GECCO):
Amsterdam, Netherlands.Figure 2: Time line diagrams for two new evolutionary algorithms, GH seeded

GE on the left [1], and TBE-GH seeded GE on the right. (GH=Grammatical
Herding [2]; GE=Grammatical Evolution [3,4]; TBE=Template Based Evolution
[5]).

http://www.omicsonline.org/0974-7230/JCSB-06-043.pdf
http://www.omicsonline.org/0974-7230/JCSB-06-043.pdf
http://books.google.co.in/books?hl=en&lr=&id=GmSlNzFvQiAC&oi=fnd&pg=PR9&dq=Grammatical+Evolution:+Evolutionary+Automatic+Programming+in+an+Arbitrary+Language.+Kluwer.&ots=UWEon0PYDc&sig=_aOjRVcE3SrjelZ3LuzuFK5ySIo#v=onepage&q=Grammatical Evolution%3A E
http://books.google.co.in/books?hl=en&lr=&id=GmSlNzFvQiAC&oi=fnd&pg=PR9&dq=Grammatical+Evolution:+Evolutionary+Automatic+Programming+in+an+Arbitrary+Language.+Kluwer.&ots=UWEon0PYDc&sig=_aOjRVcE3SrjelZ3LuzuFK5ySIo#v=onepage&q=Grammatical Evolution%3A E

	Title
	Corresponding author
	Editorial
	Conclusion
	References
	Figure 1
	Figure 2

