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Abstract

Multiple sclerosis is an inflammatory autoimmune-mediated disease of the Central Nervous System (CNS).
Different treatment protocols, based on neurotropic viral infections and/or immunization with CNS proteins, have
been implemented. Although there are encouraging outcomes, cure is still far from reach. Here, we discuss some of
these treatment options.
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Introduction
In multiple sclerosis (MS), inflammation-induced damage against

the axonal myelin sheath, or demyelination, within the central nervous
system (CNS), leads to breakdown of saltatory conduction and
progressive disability due to neuronal cell death. There is limited
endogenous repair of demyelination in the CNS of MS patients.
Moreover, the suppressor T cell responses are deficient in MS and
higher antibody responses to microbial agents have been found, both
of which may also be due to lower production of downregulatory
mechanisms [1]. While treatments are available to limit
demyelination, no treatments are available to promote myelin repair.
In this article, we discuss the variety of treatments that are available at
present and the need for suitable treatments, which can lead to
remyelination.

Importance of MS around the world
While MS is considered to be a disease of the colder climate,

primarily affecting North America and Europe, recent evidence
suggests that this disease is prevalent in areas like Japan, China [2] and
the Middle East (unpublished observation), countries traditionally
considered low-incidence regions. MS is now probably affecting over
2.5 million people worldwide.

The disease starts at a young age of 20-40 and accompanies the
patient throughout the life, resulting in a damaging socio-economic
impact [2]. Thus even more than other human diseases, MS research
needs to develop effective and specific therapies.
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human diseases, MS research needs to develop effective and specific
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Animal Models of MS
There are two main available experimental models of MS: 1) Viral

models, in which demyelination and remyelination are naturally-
occurring, and 2) experimental autoimmune encephalomyelitis model
(EAE), with symptoms that closely resemble MS symptoms in
humans, and are more widely-used to test treatment protocols for MS.
These models offer two different insights:

Multiple sclerosis and the viral Models
Pathologically MS is characterized by inflammatory demyelination,

a feature similar to viral infections of the CNS [3]. While viruses have
been considered as an important etiological agent in MS, no single
virus has been consistently isolated from MS patients, to account for a
substantial, if not all, cases of MS. However, it should be emphasized
that a few neurotropic viruses do cause inflammatory demyelinating
diseases similar to the pathological features of MS. The old and well-
characterized model of inflammatory demyelinating virus infection in
the mouse is Theiler’s murine encephalomyelitis (TMEV-IDD) [4].

In few susceptible strains of mice, TMEV initially causes an acute
infection, followed by a persistent phase, both resulting in a sustained
inflammatory disease eventually causing demyelination. It has been
hypothesized that the initial acute infection leads to CNS destruction
and release of myelin components in the surrounding
microenvironment. Myelin proteins are then taken up by local or
infiltrated antigen-presenting cells [5-7] and presented to autoreactive
T cells, resulting in their activation to myelin proteins. This process of
“bystander activation” leads to “determinant spreading”, a popular,
previously described concept in autoimmunity [8].

Although TMEV imitates essential pathological features of some
forms of human demyelinating diseases, no persistent neurotropic
virus has been identified in MS. In practical terms, a MS model of
treatment, based on a persistent demyelinating virus is difficult to use:
the experimental conditions leading to determinant spreading is
technically complicated [5-8], and seems to produce highly variable
results. Another less studied CNS virus model is the nonlethal strain,
A7-74, of Semliki Forest virus (SFV) that has been used to elucidate
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the mechanisms of demyelination [9,10] and remyelination in MS
[10]. There are several unique aspects of the SFV model: 1) easy
initiation of acute CNS disease by peripheral inoculation of SFV, 2)
clearance of virus by day 7 Post Infections (pi) with no persistence and
3) transient autoimmune mediated demyelination, in the absence of
viral antigens, on days 15-21 pi followed by remyelination, by day 35
pi [10]. The most important feature of the SFV model is that it fully
remyelinates, after the autoimmune demyelination. The major surface
protein of SFV, the E2 protein, contains its epitopes (E2P1 and E2P2),
which evoke antibody responses [11,12] and clear the virus [13,14].
Antibody response to E2P2 was found to correlate with remyelination
after SFV infection [15]. A unique feature of SFV is the presence of
“molecular mimicry” (3 identical and some partial amino acid
homologies) between the E2P2 of SFV and a peptide of mouse myelin
basic protein (MBP) [16], and between E2P2 and a peptide of human
MBP (unpublished). The role of mimicry was confirmed by the
finding that T cells and antibody from SFV-infected mice responded,
not only to E2P2, but also to myelin peptides, in particular to mouse
MBP peptide [16], Inoculation of mice with the mimicked mouse
MBP-E2P2 peptide was not pathogenic in naïve mice (unpublished).
Treatment of SFV-infected δ-knock-out mice that made low antibody
to E2P2 of SFV, by inoculation with E2P2, induced more robust
antibody response, which improved clinical symptoms and reduced
widespread demyelination [15]. The remyelinating effect following
E2P2 inoculation was most likely due to molecular mimicry between
E2P2 peptide and the peptide of mouse MBP, to which the induced
anti E2P2 antibody binds, and suggested that anti E2 P2 antibody plays
a role in remyelination.

The activation of autoreactive human T cells by viral peptides, and
generation of viral specific antibodies that cross-react with constitutive
epitopes found within the body have provided evidence for a role of
molecular mimicry between viral and autoantigenic peptides in the
etiology of human autoimmune diseases [17-19], such as MS [19],
diabetes [20] and SLE [21].

MS and EAE Model
MS is thought to be, at least partially, caused by an autoimmune

attack on three major proteins of myelin: Myelin Basic Protein (MBP),
Proteolipid Protein (PLP) and Myelin Oligodendrocyte Glycoprotein
(MOG). In EAE model, animals are injected with myelin antigens to
initiate an immune response. EAE provides a model for inflammation
and demyelination, two basic processes of MS [22-26].
Encephalitogenic epitopes of MOG-, MBP and PLP-induced EAE
models in mice were found to be demyelinating encephalomyelitis
resembling MS [23-25]. Adoptive transfer of T-cells, specific for these
proteins/peptides [26] provided useful models to study MS, and to test
the therapeutic activity of potential treatment protocols. EAE in mice,
like MS, targets oligodendrocytes, the myelin-producing cells [27,28].
Myelin-specific T cells cross the compromised blood-brain barrier,
attack the myelinated axons in the CNS, and activate and recruit
microglia and macrophages which in turn release a plethora of
cytokines and chemokines that regulate disease progression [29,30]
Some of these cytokines and chemokines promote the disease process,
whereas others act to suppress. EAE models are used extensively to test
the therapeutic activity of potential treatment protocols. Based on
findings in EAE model(s) treatment for MS patients have mainly
included immunosuppressive agents and immunoregulatory cytokines
that down-regulate the immune responses [31-36]. Inoculation with

myelin peptides to generate suppressor T cells to has also been used to
treat EAE and MS [37-40].

Immunoregulation and self-tolerance- role of natural T cells
and antibodies

The discovery of auto-reactive T cells in healthy individuals led to
the findings of mechanisms maintaining self-tolerance. Early
experiments, using MBP specific T cell lines from Lewis rats showed
that, when transferred, not only produce EAE but lead to activation of
regulatory T cells which inhibit further activation and future induction
of EAE in the recipient animals [41]. This protection was mediated by
CD8+ T cells [42]. The discovery of these inhibitory T cells provided
the basis for using inactivated myelin specific T cells as a vaccine, and
is being used as strategies for treatment of MS. Natural antibodies (Ab)
utilize germline-encoded genes directed against foreign antigens, self-
and altered self-structures [43] and are present in newborns without
stimulation by foreign antigens [44]. Natural Abs is polyreactive and
binds their antigen with rather low affinity but high avidity. In
contrast, conventional Abs undergoes affinity maturation and contains
somatic mutations to ensure high affinity antigen binding [45].

Remyelination promoting antibodies
The appearance of natural Abs in vertebrates is presumably the

firstline of defense against invading pathogens [45], which opsonize
damaged cells in the body for antibody-dependent cellular
cytotoxicity. In addition certain types of natural Abs can actively signal
in different cell types including cancer and brain cells. In mice,
another class of natural Abs, termed remyelination-promoting
antibodies, actively promote repair in demyelinated spinal cord areas
in virus-infected animals [46,47].

The first successful attempt to stimulate remyelination using
natural Abs was performed in the Theiler’s Murine Encephalomyelitis
Virus (TMEV)-induced model of demyelination [46-48]. TMEV-
infected SJL mice were immunized with Spinal Cord Homogenates
(SCH) of normal mice to stimulate polyclonal and monoclonal
antibody responses directed against a variety of CNS antigens
including myelin components. A higher level of remyelination was
observed in these, than in non-immunized virus-infected mice. Two
monoclonal mouse Abs of the IgM phenotype were identified to be
effective in promoting remyelination [49]. Both Abs were able to target
mature oligodendrocytes in vitro, and had the features of physiologic
natural autoantibodies. Based on this information remyelination-
promoting Abs of human origin were present in the sera of patients
with monoclonal gammopathies. Cerebellar slice cultures were used in
addition to cultured oligodendrocytes for preliminary screening. This
resulted in the identification of two serum-derived human
remyelination promoting Abs, sHIgM22 and sHIgM46, which
stimulated remyelination in vivo and could bind to oligodendrocytes
in vitro. The latter Ab has been humanized and has recently been
approved by the FDA for phase I clinical trials in MS patients.
Identified mouse and human remyelination promoting IgMs stimulate
remyelination after TMEV – and lysolecithin- [46-51], but not EAE -
induced (unpublished data) demyelination, in mice.

Utilizing SFV as a model to study the pathogenesis of MS, We have
shown that treatment of SFV-infected mice, with E2P2 of SFV,
induced an antibody response, which improved clinical symptoms and
reduced widespread demyelination in SFV-infected mice [15].
Furthermore, inoculation with E2P2, which contained shared viral and
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MBP amino acid sequences, induced the production of antibody to the
peptide and improved remyelination in the MOG model of chronic
progressive EAE [52]. This antibody was capable of binding to cells in
the CNS and activating them to produce myelin. In this study, elevated
amount of serum anti E2P2 antibody in peptide-treated EAE mice
correlated with remyelination in treated compared with untreated
EAE mice.

Mechanisms of action of remyelinating antibodies
Studies of IgM remyelinating antibodies [46-51] have proposed two

main mechanisms: 1) the direct hypothesis in which antibodies
recognize Oligodendrocyte Progenitor Cells (OPCs) and promote the
synthesis of new myelin. 2) The indirect hypothesis in which
antibodies activate either immune cells or cell types other than cells of
the oligodendrocyte lineage within the CNS, which, in turn, stimulate
OPCs or oligodendrocytes (e.g. by secreting remyelination promoting
factors). Support exists for both hypotheses. Evidence supporting the
direct hypothesis is derived from the observation that remyelination
promoting IgMs target oligodendrocytes in culture, isolated myelin
and myelin tracks in cerebellar slice cultures [53-54]. This could not be
supported by in vivo experiments, using immunofluorescence studies.
All tested human and mouse remyelination promoting IgMs induce
Calcium influx in cells of the OL-lineage, which suggests activation of
intracellular signaling pathways potentially important for
remyelination [55]. In the SFV model [52], higher number of
oligodendrocytes and Oligodendrocyte Progenitor Cells (OPC) in
E2P2-treated EAE mice suggested that the production of specific
antibodies after peptide treatment could have led to more migration of
oligodendrocytes into demyelinated areas and proliferation leading to
improved remyelination in treated EAE mice. It has been suggested
that for a successful remyelination, OPCs must proliferate, migrate to
sites of demyelination and mature into myelinating oligodendrocytes
[56,57]. More data is needed, however, to show the exact mechanism
of remyelination, and whether remyelination is a direct consequence
of activation of oligodendrocytes and OPCs. Our studies also indicated
that treatment with E2P2 might be able to further activate the
astrocytes, which could indirectly promote remyelinating effect of
oligodendrocytes in treated EAE mice [52]. Accordingly, astrocyte-
derived factors and chemokines promote OPC migration [56,57],
proliferation [58] and maturation [59]. Furthermore, astrocytes-
derived factors promote the survival of oligodendrocyte precursor cells
[60]. In summary, our studies have shown that treatment with SFV E2
P2, or anti peptide antibody, led to immunomodulation, improvement
of clinical disease, and detectable improvement in remyelination, in
mice with EAE. The improvement in remyelination appeared to be as
a result of increased oligodendrocyte number (and OPC), and
oligodendrocyte and astrocyte activation that led to repair and
increased remyelination in the CNS of EAE mice.

As stated above, one of the proposed mechanisms would be binding
of anti E2 P2 antibody to glia and direct enhancement of
oligodendrocyte proliferation and migration. This binding can result
from antigenic similarities between the surface of enveloped SFV
particles and glycoproteins of brain cells and components. The
significance of findings in SFV to the field of MS, and other
autoimmune inflammatory diseases of the CNS, rely on the concept of
molecular mimicry that has been proven to be credible in several other
autoimmune diseases as well [16-21].

SFV buds from the infected neurons and other cells in the brains of
infected mice, incorporating their constituents into the envelopes of

virions. Antibody responses to galactocerebrosides have been detected
in the sera of SFV-infected mice at 2-4 weeks following infection
(unpublished).

Another mechanism for improvement in remyelination, could be
an immunoregulatory role of anti-viral antibody, which may have led
to production of some cytokines and growth factors that promote
immunoregulation and consequently improve remyelination.

What are the available treatments for MS
The predominant treatments that currently exist for MS are

immunomodulators that have anti-inflammatory [31,32] or anti-
cytokine effects [33], inducers of suppressor T cells and TH2 responses
[40,41], and inducers of immunotolerance [37]. Treatments for MS
also include immunomodulators [(interferon (IFN) beta] [33,35,36]
glatiramer acetate [38-40], immunosuppressants (mitoxantrone) [61]
and natalizumab [62,63], a monoclonal antibody that prevents
activated lymphocyte transmigration in the central nervous system.
IFN beta and glatiramer acetate are effective in reducing clinical
relapses and lesions visible on Magnetic Resonance Imaging (MRI) in
patients with MS. Natalizumab reduces the short-term risk of
increasing disability and the rate of clinical relapse in patients with
relapsing MS. Many candidate drugs are being evaluated in relapsing-
remitting forms of MS. While their efficacy is encouraging, the
potential benefit is offset by toxicity, including severe infections due to
immunosuppression.

Therefore, any treatment that induces and improves repair of
damaged myelin in the mouse model and may have the potential to
repair human myelin, would be an improvement in therapy. This
treatment strategy could be used as monotherapy or in conjunction
with other proven immunosuppressive therapies (especially in severe
MS).

Potential emerging treatments
Growing evidence implies that the normal, mature CNS contains

low or non-detectable levels of most Matrix Metalloproteinases
(MMPs); the principal cells that express these MMPs are perivascular
and parenchymal microglia. On the other hand, studies on the serum,
Cerebrospinal Fluid (CSF) and brain tissue of MS patients have shown
an increase of MMP-1,-2,-3,-7,-9,-12 and-14 activities, but in many
neuroinflammatory conditions, such as encephalitis, meningitis, brain
tumours, cerebral ischaemia, Guillain-Barré syndrome, these enzymes
are also significantly upregulated. It seems that cells of monocyte
group are key contributors to the neuroinflammatory process in MS
through a mechanism that involves the high expression of different
MMPs, such as MMP-1, -2, -3, -7, -9, -14 and decreased expression of
TIMP-1 and TIMP-2. In the damaged sites of the CNS, there are
complex and dynamic regulations of MMP expression by different cell
types. The imbalance between MMP activity and the inhibitory action
of tissue inhibitors of metalloproteinases (TIMPs) are implicated in
MS development, as one of the MMP roles may be to facilitate the
transmigration of circulating leukocytes into the CNS. Therefore, it is
possible that the MMPs attack the basal lamina macromolecules that
line the blood vessels, disrupting the BBB’s integrity. Therefore, MMPs
and their TIMPs play a key role in the immunopathogenesis of MS,
and are suggested as potential targets to treatments. Hence, more
research in MMPs/TIMPs domain and their roles in
immunopathogenesis of disease might be recommended as a
therapeutic toll for controlling MS [64]. The recent advances in stem
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cell therapies may serve as potential treatments for neurological
disorders. There are broad types of stem cells such as neural,
embryonic, mesenchymal and hematopoietic stem cells with
unprecedented hope in treating many debilitating diseases. Nowadays,
Stem cell therapy in axonal demyelination and neurological disability
(Specially MS) has been accelerated by growth in animal models, as
well as by clinical studies in human patients. A new way that promotes
this procedure is tissue engineering, which uses synthesis of natural
polymer that simulates extra cellular matrix for better response of
body to grafted cells. The results of these new studies may pave the
road for the utilization of stem cells for the treatment of MS [65].

The course of disease in MS includes a relapsing, and often
eventually progressive, which is heterogeneous; confidant prediction
of long-term individual prognosis is not yet possible. However,
because revised MS diagnostic criteria that incorporate neuroimaging
data facilitate early diagnosis, most patients need to make important
long-term treatment decisions, and selection of disease-modifying
therapy. Currently, there are several such approved treatments with
varying degrees of efficacy for reducing relapse risk and preserving
neurological function, but their long-term benefits remain unclear
[66]. Nevertheless, the place of these disease-modifying therapies
within the context of several different MS management strategies,
including those currently in use (sequential monotherapy, escalation
therapy, and induction and maintenance therapy) and others that may
soon become feasible (combination approaches and "personalized
medicine") have been reviewed. Although, there is no clear indication
for using vitamin A as a treatment for MS, there is some evidence [67]
that should encourage clinical trials with vitamin supplementation as a
potential treatment or as an add-on option. It has been suggested that
vitamin A decreases inflammation and increases tolerance in
autoimmunity; it may also help in brain protection in multiple
sclerosis (MS). Vitamin A acts in synergy with vitamin D, and the
immunological homeostasis ensured by these vitamins should not be
unbalanced in favor of only one of them [67].
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