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Introduction
During the past few years many researchers in the field of nonlinear 

dynamics are devoted to multistability [1-13]. This is mainly due to 
its numerous applications in various domains [14-17]. Multistability 
can be view as the coexistence of multiple disconnected attractors 
in a system’s phase space by switching the initial states. In systems 
presenting such behaviour, the trajectories converge to a basin of 
attraction given a set of system initial conditions; and the dimension of 
the basin is very close to the dimension of the state space. Multistability 
has been previously observed in various dynamical systems including 
the Chua’s circuit [18-26]. Chua’s circuit is one of the simplest chaotic 
circuits with a very rich dynamics reported in the literature. It consists 
of a linear inductor, a linear resistor, two linear capacitors and a 
nonlinear part called the Chua’s diode. The latter is the only element 
responsible of the complex dynamics of the circuit. Since the invention 
of this circuit by Leon O. Chua in 1983, many related work have been 
reported by modifying the nonlinear part of the circuit. Consequently, 
Chua’s diode has been implemented using standard components such 
as diode, transistor, operational amplifier and cellular neural network 
(CNN) just to name a few [27-32]. Most often the obtained system is 
symmetric and the related attractors are symmetric in the phase space, 
leading to the coexistence of multiple attractors. A question can then 
be asked: what is the effect of an asymmetric Chua’s diode on the 
multi-stable behaviour of a system in general and on a Chua’s circuit 
in particular? In other word what are the mechanisms that occur when 
the Chua’s circuit loses its symmetry property in the multi-stable 
region? This question is very important since the answer lead to the 
generalization of multistability in the Chua’s circuit by adjusting its 
nonlinear part and hence its symmetry property.

To provide some answer to this question we propose in this 
paper a generalized Chua’s circuit with a smoothly adjustable 
symmetry and nonlinearity. The circuit is obtained by replacing the 
nonlinear hyperbolic function f(x)=-ax+bsinh(x) of a Chua’s circuit 
by its parametric form fk(x)=-ax+0.5b(exp(kx)-exp(x)) [33]. Let us 
stress that the nonlinear hyperbolic function f(x)=-ax+bsinh(x) is a 
symmetric nonlinear function obtained from an active diode pair. This 

nonlinear function has been used by to construct a symmetric system 
with complex coexisting behaviour of multiple kinds of disconnected 
symmetric attractors of stable point attractors, limit cycle and chaotic 
attractors. Earlier, Chen and collaborators used the same active diode 
pair to construct a Chua’s circuit characterized by hidden dynamics 
and multistability [33,34]. However the coexisting attractors reported 
in were symmetric due to the symmetric nonlinear function of the 
model [21-33]. This paper provides an improved Chua’s circuit based 
on a new active diode pair. This active diode pair has the particularity 
that the form of its nonlinearity is adjustable and hence its symmetry. 
We then report from the circuit some striking dynamics including 
reverse bifurcation, merging crisis, coexisting bifurcations leading to 
coexisting attractors. More importantly, multistability in the symmetry 
boundary is discussed by switching the control parameter k.

The rest of the paper is structured as follows: Sect. 2 focuses on the 
description of the improve Chua’s circuit with adjustable nonlinearity. 
The equilibrium point and their stability are investigated through the 
dimensionless equation. Bifurcation analysis of the circuit is done in 
Sect. 3. Sect. 4 is devoted to Pspice and experimental results. The work 
is summarized in Sect. 5.

Description and Analysis of the Generalized Chua’s 
Circuit
The circuit and state equations

The generalized Chua’s circuit is presented in the schematic 
diagram (Figure 1). Like the classical Chua’s circuit it consists of a 
linear inductor L, two linear capacitors C1 and C2, a linear resistor R 
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and a parametric Chua’s diode NR (Figure 2). Let us mention that an 
adjustable resistor Rk=kR0 is introduced into the Chua’s diode in order 
to smoothly adjust its symmetry making the circuit to be generalized. 
Therefore the symmetry of the circuit can be established for k=1(i.e 
Rk=R0). When k ≠ 1, (i.e Rk=R0) the symmetry breaks down.

To derive the mathematical model of the circuit it is necessary to 
assume that all circuit’s components operate in the linear region except 
the semiconductor diodes. The latter are modeled with an exponential 
function given by the Shockley diode equation [34,35]:
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Where Is is the reverse saturation current, n is the emission 
coefficient, and VT is the thermal voltage of the diode [36-40]. 
Assuming υR=υ1 and iR the voltage across and the current through the 
Chua’s diode, the characteristics can be derived as follows
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With the above considerations, the dynamics of the generalized 
Chua’s circuit is characterized by a set of three coupled first order 
nonlinear differential equations:
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The circuit can be rescaled to its dimensionless form (6) with the 
following change of variables and parameters (5):
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Where fk(x1)=-ax1+b(exp(kx1)-exp(-x1)) is the nonlinear 
characteristic of the Chua’s diode. Remark that only one state variable 
is concerned with the nonlinear part of the model. This adjustable 
nonlinearity is responsible of the complex dynamics of the whole 
system. Five parameters (k; a; α; β) can be identified in the model. One 
of them (b) is related to the intrinsic diodes parameters and will be 
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C1C2 v R
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Figure 1: The modified Chua’s circuit consist of a linear inductor L, two linear capacitor C1 and C2, a linear resistor R.
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Figure 2: The nonlinear resistor NR of the modified Chua’s circuit.
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kept constant (b=3.01756 × 10-4) during the numerical simulations. 
The rest can be used as control parameter but α and k are used as the 
main control parameters. Note that parameter k is used to study the 
effect of symmetry in a multi-stable region.

Symmetry

By switching parameter k the symmetry of the generalized 
Chua’s circuit can be modified (Figure 2) is the representation of 
the nonlinear function fk(x) where the symmetry breaks with the 
variation of parameter k. The curve in black is related to the particular 
case k=1. This particular case has been extensively studied by Bao and 
coworkers [33]. For this case the nonlinear function is symmetric 
and the system is invariant under the coordinate transformation

1 2 3 1 2 3( , , ) ( , , )x x x x x x⇔ − − −  leading to symmetric attractors, but in 
the general case this condition can only be achieved by switching a 
parameter (k) related to the nonlinearity.

Fixed point analysis

The equilibrium points of the system can be evaluated by setting 
the right hand side of (6) to zero. It is found that system (6) has three 
equilibriums points including one zero equilibrium and two non-zero 
equilibrium points described as follows:

0 (0,0,0)
( ,0, )
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 				                      (7)

Where c is the solution of the transcendental equation:

(a-1)c-0.5b(exp(kc)-exp(-c))=0 			                 (8)

Using the MATLAB build-in function and the set of parameters 
of the particular case the solution of (8) yields. This solution is in 
accordance with the results since the graph in black which represents 
the case k=1 intersects the x-axis at ±8.77343 (Figure 3).

The Jacobian matrix at the various equilibriums is defined as:
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With for the zero fixed point; for the non-zero equilibriums. The 

Eigen values related to the above matrix can be found by solving the 
following characteristics equations:
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For the particular case k=1; α=5.892857; β=6.6; a=1.111111 
b=3.017867 × 10-4 the Routh–Hurwitz criterion is not satisfied for the 
zero equilibrium implying that the latter is always unstable whereas 
the non-zero equilibriums are stable [36].

Numerical Results and Discussions
To scan the dynamics of the generalized Chua’s circuit under 

consideration, the fourth order R-K algorithm has been used to solve 
system (4) with a small integration step. The transient is eliminated 
during the integration. The main indicator used to demonstrate the 
phenomenon of multistability is the coexisting bifurcation diagrams. 
Note these diagrams are obtained by plotting the local maximums of 
the variable versus a given control parameter. The largest lyapunov 
exponents are also used to characterize the system’s dynamics [37-39].

Coexisting bifurcations and coexisting attractors in the 
particular case (k=1)

In this section we make a brief recall of the results presented by Bao 
and coworker [33]. To this end, we fixed k=1; a=1.111111; b=3.017867 
× 10-4; β=6.6 and increase α in the range 5.5<α<6.7. The system is 
solved with various initial states leading to coexisting bifurcations 
(Figure 4). The graphs in green and black colours are the bifurcations 
of the two nonzero fixed points. These diagrams are obtained from the 
initial states ( 8; 0; 8)±  . A limit cycle is obtained by solving the system 
with (0; 8; 0). The corresponding bifurcation diagram is represented 
in magenta colour. When the initial conditions ;(0 0.001; 0)  are 
chosen, two different routes coexist where periodic attractors coexist 
at the same point and chaotic attractors coexist at the same point. 
The corresponding bifurcation diagrams are provided in blue and 

Figure 3: The nonlinear function fk(x) for various values of the parameter k. Notice that for k=1 the system displays two symmetric fixe 
points, but for k≠1 the fixed points are no more symmetric.
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red colour with an enlargement (Figure 4). Under these conditions, 
it is obvious that the system moves from periodic to chaotic attractors 
with a period doubling bifurcation. The largest lyapunov exponent can 
also attest this dynamics (Figure 4). In addition the different routes 
lead to a symmetric double scroll attractor. For illustration the graph 
of Figure 5 is provided with the projection of the symmetric double-
scroll chaotic attractor (a), (b), (c) and the corresponding double-
sided Poincaré section (d) in the plane x1=0; for α=6.1. Various phase 
portraits are plotted for different values of the parameter α to illustrate 
the coexistence of point attractors, limit cycles and chaotic attractors 
(Figure 6).

Coexisting bifurcations and coexisting attractors in the 
particular case (k ≠ 1)

This section is devoted to the analysis of the generalized Chua’s 
circuit: k ≠ 1. We use k as the control parameter in the range 0.4<k<1.2; 
the rest of parameters being fixed as α=5.892857; β=6.6; a=1.111111; 
b=3.017867 × 10-4. With these parameters the system is solved with 
various initial conditions and coexisting bifurcation is achieved 
(Figure 5). Figure 7 is an illustration where the graphs in red and 
blue colours are obtained by setting the initial conditions (0, ±0.01, 
0). From these diagrams it is obvious that a spiral chaotic attractor 
(graph in red colour) always coexist for the set of parameters above 
mentioned. Beside we have a period doubling bifurcation (graph in 
blue colour) leading to different spiral chaotic attractor. The systems 
dynamics transit from periodic to chaotic behaviour. Several periodic 
windows intersect the chaotic region. With (0, -8, 0) and (20, 0, 20) 

as initial states, the system yields the graphs in magenta and green 
colours where a limit cycle and points attractors are obtained. Note 
that the amplitude of the limit cycle decreases as parameter k increases. 
In addition, the system has two stable point attractors. One of them 
is always located at x1=8.77343 and the coordinate of the second one 
decreases as parameter k increases. This observation confirms the 
results presented (Figure 3).

Various phase portraits are plotted in the (x1, x2) plane for different 
values of parameter k showing different kinds of coexisting attractors 
of point attractors, limit cycles and spiral chaotic attractors (Figures 
8-10). The case k=0.8 has been explored in deep by controlling the 
system with parameter α in the range 5.5<α<6.7 with β=6.6, a=1.111111; 
b=3.017867 × 10-4. For this set of parameter system (6) experience 
five coexisting bifurcations and thus five coexisting attractors: a limit 
cycle, two asymmetric point attractors and two period doubling 
routes to asymmetric double scroll chaotic attractor. Figure 11 is the 
representation of the symmetric double scroll chaotic attractor and the 
corresponding double-sided Poincaré section (d) in the plane x1=0; for 
α=6.1. A similar study has been carried out for k=1.2 (Figure 12). The 
coexisting bifurcation and cthe corresponding coexisting attractors 
are shown respectively (Figures 13 and 14). For a kind of coexisting 
attractor (k=0.8, α=6.1, β=6.6, a=1.111111, b=3.017867 × 10-4) the cross 
section of the basin of attraction has been plotted where the region in 
red represents the basin of attraction of the asymmetric double scroll 
chaotic attractor, the regions in cyan and purple colours represents 
the basin of point attractors. The yellow represent the region of limit 
cycle. Note that the limit cycle is a hidden attractor since its basin 

Figure 4: Coexisting bifurcation diagrams (a) showing different routes taken by coexisting attractors when symmetry breaks down with k=1; β=6.6; 
a=1.111111; b=3.017867 × 10-4, and the corresponding maximum Lyapunov exponents (b), c(i) and c(ii) enlargement of the blue and red diagrams in the 
range 5.7<α<5.95 respectively. The initial states are (x1(0);x2(0);x3(0))≡red: (0; 0.001; 0); blue (0; -0.001 0); magenta: (0; 8; 0).
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Figure 5: Projection of the Double-Scroll Chaotic Attractor (a), (b), (c) and the corresponding double-sided Poincaré section (d) in the plane x1=0: for k=1 
and the rest of system parameter set as β=6.6; α=6.1; a=1.111111; b=3.017867 × 10-4. The attractor is perfectly symetric.

Figure 6: Numerical coexisting attractors with different values of α in the x-y plane, k=1; β=6.6; a=1.111111; b=3.017867 × 10-4, Limit cycles and fixe point 
attractor for α=5.66. (a)Limit cycles and fixe point attractor for α=5.8, (b) Limit cycles and fixe point attractor for α=5.879, (c) Spiral chaotic attractor, limit 
cycle and fixe point attractor for α=5.879, (d) Spiral chaotic attractor, limit cycle and fixe point attractor for α=5.879, (e) Double-scroll chaotic attractor, limit 
cycle and fixe point attractor for α=6.1, (f) Limit cycles and fixe point attractor for α=6.2. The initial sate are (x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-
0.001; 0); green (0; 8; 0); magenta: (-8; 0;8);cyan: (8 0;8).
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Figure 7: Dynamics of system (6) versus the control parameter k for different initial states: (x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-0.001; 0); magenta: 
(-8; 0;8); green (0; 8; 0); black: (-8 0;8).

Figure 8: Numerical coexisting attractors with different values of k in the x-y plane, α=5.892857; β=6.6; a=1.111111; b=3.017867 × 10-4. (a) Spiral chaotic 
attractor, Limit cycles and fixe point attractor for k=0.41, (b) Spiral chaotic attractor, Limit cycles and fixe point attractor for k=0.72, (c) Spiral chaotic attractor, 
Limit cycles and fixe point attractor for k=0.8, (d) Spiral chaotic attractors, limit cycle and fixe point attractor for k=1, (e) Spiral chaotic attractors, limit cycle 
and fixe point attractor for k=1.14, (f) Spiral chaotic attractors, Limit cycles and fixe point attractor for k=1.2. The initial sate are (x1(0);x2(0);x3(0))≡red; 
(0;0.001;0); blue: (0;-0.001; 0); green (0; -8; 0); magenta: (20; 0;-20);cyan: (8 0;8).for (a) and (x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-0.001; 0); green 
(-8;0;8); magenta: (8; 0;-8); cyan: (-8 0;8) for the rest.
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Figure 9: Coexisting bifurcation diagrams (a) showing different routes taken by coexisting attractors when symmetry breaks down with, and the 
corresponding maximum Lyapunov exponents (b). c(i) and c(ii) are the enlargement of the blue and red diagrams in the range 5.7<α<5.95 respectively. 
The initial sate are(x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-0.001; 0); magenta: (08;0); green (-8;0;8); black: (8; 0; -8).

Figure 10: Numerical coexisting attractors with different values α of in the x-y plane, k=0.8; β=6.6; a=1.111111; b=3.017867 × 10-4. (a) Limit cycles and 
fixe point attractor for α=5.69, (b) Limit cycles and fixe point attractor for α=5.778, (c) Limit cycles and fixe point attractor for α=5.855, (d) Spiral chaotic 
attractor, limit cycle and fixe point attractor for α=5.94, (e) Spiral chaotic attractor, limit cycle and fixe point attractor for α=5.913,(f) Double-scroll chaotic 
attractor, limit cycle and fixe point attractor for α=6.1. The initial sate are (x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-0.001; 0); green (0;8;0); magenta: 
(-8;0;8); cyan: (8; 0; -8).
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Figure 11: Projection of the Double-Scroll Chaotic Attractor (a), (b), (c) and the Corresponding Double-Sided Poincaré Section (d) in the plane x1=0: for 
k=0.8 and the rest of system parameter set as β=6.6; α=6.1; a=1.111111; b=3.018776 × 10-4. The attractor is not symmetric.

(a)               (b)
Figure 12: Cross Sections of the Basin of Attraction with x1(0)=0 and x2(0)=0 corresponding to two Different Parameters of Coexisting Attractors presented 
in figure: 10 (f) α=6.1.

Figure 13: Coexisting Bifurcation Diagrams (a) showing Different Routes taken by Coexisting Attractors when Symmetry breaks down with k=1.2; β=6.6; 
a=1.111111; b=3.017867 × 10-4, and the Corresponding Maximum Lyapunov Exponents (b). c(i) and c(ii) are the Enlargement of the blue and Red Diagrams in 
the range 5.65<α<5.915 respectively. The Initial Sate are (x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-0.001; 0); magenta: (0; 8;0); green (-8;0;8); black: (8; 0; -8).
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of attraction does not intersect with small neighbourhoods of three 
equilibrium points of system (6) [40,41].

Let us stress that multistability has multiple fields of application 
and as such the phenomenon has been extensively revealed in 
nonlinear dynamical systems [1-18].

Pspice Simulation Results
According to the above numerical analysis, the generalized Chua’s 

circuit experiences the striking dynamics of coexisting attractors. To 
verify this dynamics the circuit of Figure 1 is simulated under Pspice 
software with the Chua’s diode of the following components values are 
used (Figure 2):

C2=33n, L=20mH, R=2K, Rf=R==1.8K, R0=400K, kR0=320K(k=0.8).

For C1=6ŋF, three limit cycles coexist and the initial states are 

(υC1(0),υC2(0),iL(0))=(0, ±0.001, 0) and (υC1(0),υC2(0),iL(0))=(0, 8, 0) 
(Figure 15).

For C1=5.72ŋF, three limit cycles coexist and the initial states are 
(υC1(0),υC2(0),iL(0))=(0, ±0.001, 0) and (υC1(0),υC2(0),iL(0))=(0, 8, 0) 
(Figure 16).

For C1=6ŋF three limit cycles coexist and the initial states are 
(υC1(0),υC2(0),iL(0))=(0, 0.001, 0) and (υC1(0),υC2(0),iL(0))=(0, 8, 0) 
(Figure 17).

With regard to coexisting attractors, a very good similarity can be 
observed between the numerical phase portrait of the circuit’s model 
and the PSpice phase portrait of the real circuit (Figure 1). However, some 
slight differences can be noticed between the numerical and the PSpice 
simulation results. These differences should be attributed in part to the 
precision on the values of electronic components as well as simplifying 
assumptions considered during the modelling process of the circuit.

Figure 14: Numerical Coexisting Attractors with different values of α in the x-y plane, k=1.2; β=6.6; a=1.111111; b=3.017867 × 10-4. (a) Limit cycles and fixe point 
attractor for α=5.68, (b) Limit cycles and fixe point attractor for α=5.82, (c) Limit cycles and fixe point attractor for α=5.85, (d) Spiral chaotic attractor, limit cycle and 
fixe point attractor for α=5.868, (e) Double-scroll chaotic attractor, limit cycle and fixe point attractor for α=6, (f) Limit cycles and fixe point attractor for. The initial 
sate are (x1(0);x2(0);x3(0))≡red; (0;0.001;0); blue: (0;-0.001; 0); green: (0; 8;0); magenta (-8;0;8); cyan: (8; 0; -8).
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Figure 15: PSpice simulation results showing the coexistence of three limit cycles for: C1=6 ŋF; The Initial Conditions are (υC1(0), υC2(0), iL(0))=(0, ±0.001) and 
(υC1(0), υC2(0), iL(0))=(0,8,0). C1=6, C2=33 n, L=20 mH, R=2k, Rf=R3=1.8K, R0=400K, kR0=320K, k=0.8.
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Figure 16: PSpice Simulation Results showing the Coexistence of two Chaotic Spiral Attractors and a Limit Cycle for: C1=5.72 ŋF. The Initial Conditions are (υC1(0), 
υC2(0), iL(0))=(0,±0.001) and (υC1(0), υC2(0), iL(0))=(0,8,0). Multistability: C1=5.72, C2=33 n, L=20 mH, R=2K, Rf=R3=1.8K, R0=400K, kR0=320K, k=0.8.
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Conclusion
This paper has investigated a generalized Chua’s circuit. The circuit 

is obtained by replacing the Chua’s diode of a classical Chua’s circuit 
with an adjustable Chua’s diode modelled by fk(x1)=-ax1+b(exp(kx1)-
exp(-x1)). The stability analysis shows that the system has two stable 
nonzero fixed points. In addition the system is symmetric for the 
particular case. In this case the system displays complex nonlinear 
phenomena such as the symmetry breaking in which a symmetric pair 
of attractors coexists and merges into one symmetric attractor through 
an attractor-merging bifurcation. When k ≠ 1 the symmetry breaks 
down but its complex dynamics remain complex with the coexistence 
of point attractors, limit cycles, chaotic spiral attractors and double 
scroll chaotic attractors. In contrast to the case k=1, two asymmetric 
chaotic spiral attractors coexist and merge into one asymmetric double 
scroll chaotic attractor. For a kind of coexisting attractors the cross 
section of the basins of attraction of the various coexisting attractors 
has been plotted. More importantly, multistability in the symmetry 
boundary is discussed by switching the control parameter k The 
result shows that the limit cycle is a hidden attractor since its basin 
of attraction does not intersect with small neighbourhoods of three 
equilibrium points of system (6) [40,41]. The Pspice simulation results 
support the numerical simulations.
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