

Multigene Analysis for Differentiation of *Candidatus* Phytoplasma australasiae-Related Strain Associated with Witches-Broom of *Daucus carota* in India

P Swarnalatha¹, V Venkataravanappa^{1,2*}, CN Lakshminarayana Reddy³, KV Ashwathappa¹ and M Krishna Reddy^{1*}

¹ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore-560089, Karnataka, India

²CHES, Chettalli, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India

³Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore-560065, Karnataka, India

*Corresponding author: V. Venkataravanappa, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore-560089, Karnataka, India, E-mail: venkatrajani@gmail.com; mkreddy.iihr@gmail.com

Received date: December 12, 2018; Accepted date: December 27, 2018; Published date: January 21, 2019

Copyright: ©2019 Swarnalatha P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Leaf samples (seven) from carrot plants exhibiting witches' broom symptoms were collected from the farmers' fields of Bangalore Rural and Chikkamaglore Districts of Karnataka, India. The presence of the causal agent was identified through PCR using the 16SrRNA, Ribosomal protein (rp) and SecY gene-specific primers. The seven carrot samples gave positive amplification for the phytoplasma specific primers. The amplified products were cloned and sequenced. The sequence analysis showed that the *16SrRNA*, *rep* gene and *SecY* gene of seven CarWB phytoplasma isolates shared highest not identity of 94.5% to 97.0%, 94.2% to 98.8% and 99.1% to 99.5% with *16SrRNA*, *rep* and *SecY* gene of *Ca*. P. australasiae (16SrII) group isolates reported so far. This result is well supported by close clustering of CarWB phytoplasma isolates in the phylogenetic analysis. The virtual RFLP pattern generated for the CarWB phytoplasma revealed seven out of six isolates infecting carrot were different (similarity coefficient is ranged from 0.87 to 0.93) with respect to the nine enzymes from the reference pattern of the *Ca*. P. australasiae (16SrII) subgroups reported so far. Based on the threshold similarity coefficient for the new subgroup, delineation is set at 0.97. Therefore, the six CarWB phytoplasma sasociated with the little leaf disease of carrot from India.

Keywords: *Ca.* P. australasiae; 16SrII group; PCR; Phylogenetic analysis; Witches broom disease

Introduction

Carrot (Daucus carota L.) is an important root vegetable crop originated from Asia and belongs to the family, Apiaceae. China is the leading producer of carrot followed by Russia, America, Uzbekistan, and Poland. In India, different coloured carrots are being cultivated commercially round the year in an area of 3.46 million hectares with the annual production of 5.32 metric tonnes [1]. Carrot is rich in carotene (pro-vitamin A) and is consumed either as a fresh salad or in cooked form. The crop is a natural host for many viruses and globally, more than 30 different viruses were known to affect carrot [2,3]. Apart from different viruses, the carrot is being known to be susceptible to many phytoplasmas, reported under different names viz. aster yellows, ash witches' broom, "stolbur" and yellows [4]. The important phytoplasma infecting carrot belongs to the 16SrI subgroups are C and B [5-10], 16SrII subgroup C [11,12], 16SrIII, 16SrV [13,14], 16SrVI subgroup A [15] and 16SrXII subgroup A [8]. Apart from these, aster yellows phytoplasma (16SrI group), major phytoplasma infecting carrot was reported from different parts of the world [16-18]. The discovery of new phytoplasmas in many crops revealing the diversity of these pathogens across the world. In India, eleven groups (16SrI, 16SrII, 16SrIII, 16SrV, 16SrVI, 16SrVII, 16SrIX, 16SrX, 16SrXII, 16SrXIII and 16SrXIV) of phytoplasmas infecting different crops were identified [19]. In the present study, we have characterized another

phytoplasma belonged to the *Candidatus* Phytoplasma australasiae (16SrII group) associated with carrot witches' broom disease of carrot in India.

Material and Methods

Collection of disease samples

During the year 2016-2017, leaf samples from the carrot plants showing symptoms typical to phytoplasma infection such as dense clusters of highly proliferating apical shoot region, malformed flowers growth (phyllody), witches broom and stunted growth (Figure 1) were collected from the fields located at Bangalore Rural and Chikkamanglore Districts, Karnataka State, India.

Five carrot samples were from Bangalore Rural District (one each from Hesseraghatta, Rajanukuta, Doddabalikerae, Shivakote, and Kudige) and two samples were from Chikkamanglore District. Two non-symptomatic plants were also collected to serve as negative controls. The samples were stored at -80°C for further studies.

The carrot isolates collected from different locations were designated as CarWB1, CarWB2, CarWB3, CarWB4, CarWB5 (Bangalore Rural District), CarWB6-CM and CarWB7-CM (Chikkamanglore).

Page 2 of 13

Figure 1: Carrot sample showing the typical witches broom phtoplasma symptoms under natural conditions.

DNA extraction and PCR amplification of 16SrRNA, *SecY* gene, and *ribosomal protein* (rp) gene

To confirm the phytoplasma infection in carrot, total DNA was isolated from seven infected carrot leaf samples using Cetyl-trimethyl ammonium bromide (CTAB) method [20]. The DNA isolated (Sesame and brinjal) from a known phytoplasma was used as positive control and from samples without symptoms used as negative control. Both direct and nested PCR assays were performed for detection of the phytoplasma DNA in carrot samples using phytoplasma universal

16SrDNA primer pairs P1/P7 [21,22] and R16F2n/R16R2 [23], respectively. After general detection, the rp operon encompassed with *rps19, rpl22* and *rps3* genes, was amplified using *rp* gene specific (*II*) *F1A/rp* (*II*) *R1A* primer pair [24]. Similarly, the SecY gene was amplified by PCR using primers SecYF1/SecYR1 [25] of carrot phytoplasma, which has been proven to be useful for fine-scale differentiation of phytoplasma strains. The PCR reactions were carried out for DNA amplification as described by Venkataravanappa et al. [26]. PCR amplified products of 16SrRNA (1.8 kb), *rp* gene (1.2 kb) and *SecY* gene (1.5 kb) were purified and cloned into the pTZ57R/T vector (Fermentas, Germany) as per manufactures instructions. The transformed recombinant clones were identified by restriction endonuclease digestion and selected positive clones were sequenced.

Sequence analysis

The full-length 16SrRNA, Ribosomal protein *(rp)* gene, and *SecY* gene sequence of CarWB phytoplasma isolates obtained were subjected to BLAST search for finding the similar sequences in the database. The sequences showing more homology with *16SrRNA* (Table 1), Ribosomal protein *(rp)* gene (Table 2) and *SecY* gene (Table 3) of different phytoplasma infecting crops were retrieved from NCBI database and aligned using SEAVIEW program [27]. A phylogenetic tree was constructed using MEGA 7 software [28] using the Neighbour-Joining method with 1000 bootstrapped replications to estimate evolutionary distances between all pairs of sequences simultaneously. The *in-silico* RFLP patterns of the 16SrRNA gene from CarWB phytoplasma isolates were generated using the gel plotting program pDRAW32 (http://www.acaclone.com/) and iPhyClassifier software [29].

Phytoplasma species	Sub-group	Accession No.	Country
Eggplant big bud	16SrII	JX483699	Iran
Faba bean phyllody	16SrII	KP869129	Iran
Eggplant big bud	16SrII	JX441321	Iran
Sweet potato little leaf	16Srll	JQ868446	Australia
Scaevola witches broom	16SrII	AB257291	Oman
Crotalaria witches-broom	16SrII	EU650181	China
Pear decline	16SrII	EF193157	Taiwan
Alfalfa phytoplasma	16SrII	KY449416	Sudan
Tomato witches-broom	16SrII-D	HM584815	Saudi Arabia
Ca. P. aurantifolia	16SrII-B	U15442	Oman
Peanut witches-broom phytoplasma	16SrII-A	L33765	Taiwan
Ca. P. austrlasia	16SrII-D	Y10097	Australia
Crotalaria phyllody phytoplasma	[16SrII-C	EF193355	Thailand
Cactus witches'-broom phytoplasma	16SrII-G	EU099568	China
Cactus witches'-broom phytoplasma	16SrII-F	EU099556	China
Cactus witches-broom phytoplasma	16SrII-H	EU099569	China

Page 3 of 13

Cactus witches-broom phytoplasma	16SrII-I	EU099551	China
Cactus witches-broom phytoplasma	16SrII-J	EU099552	China
Cactus witches-broom phytoplasma	16SrII-K	EU099572	China
Cactus witches-broom phytoplasma	16SrII-L	EU099546	China
Picris echiodes phyllody phytoplasma	16Sr11-E	Y16393	Italy
Ca. P. fraxini	16SrVII	AF092209	USA
Ca. P. ulmi	16SrV	AY197655	USA
Ca. P. palmae	16SrVIII	U18747	USA
Ca. P. cynodontis	16SrXIV	AJ550984	Italy
Ca. P. phoenicium	16SrIX	AF515636	Lebanon
Ca. P. pruni	16SrIII	L04682	USA
Ca. P. mali	16SrX	AJ542541	Italy
Ca. P. asteris	16Srl	M30790	Michigan
Ca. P. australiense	16SrXIII	L76865	Australia
Pigeon pea witches'-broom	16SrIX	AF248957	USA
Ash yellows	16SrVIII	AF189215	USA: New York
Ca. P. braziliense	16SrXV	AF105315	USA
Apple proliferation	16SrX	AF248958	Italy
Chickpea phyllody	16Srll	FJ870549	Pakistan Faisalabad
Clover phyllody	16Srl	AF222065	Canada
Cactus witches'-broom	16Srll	AJ293216	China
Clover yellow edge	16SrIII	AF189288	USA: Oregon
Coconut lethal yellowing phytoplasma	16SrIV	AF498307	Jamaica
Ca. P. trifolii	16SrVI	AY390261	Canada
Fragaria multicipita phytoplasma	16VI-G	AF190225	Canada
Ca. P. luffae	16SrVIII	AF353090	Taiwan
Ca. P. oryzae	16SrXI	AB052873	Thailand
Ca. P. solani	16SrXII	AJ964960	Spain
Periwinkle virescence	16SrXIII	AF248960	Mexican
Ca. P. brasiliense	16SrXV	AF147708	USA
Ca. P. graminis	16SrXV1	AY725228	Cuba
Ca. P. caricae	16SrXVII	AY725234	Cuba
Ca. P. americanum	16SrXVIII	DQ174122	USA
Ca. P. castaneae	16SrXIX	AB054986	South Korea
Ca. P. rhamni	16SrXX	X76431	Europe
Ca. P. pini	16SrXXI	AJ632155	Spain

Page 4 of 13

Phytoplasma sp. strain	16SrXXII	Y14175	Nigeria
Grapevine yellows	16SrXXIII	AY083605	Australia
Sorghum bunchy shoot phytoplasma	16SrXIV	AF509322	Australia
Tea witches broom	16SrXXV	AF521672	Australia
Sugarcane phytoplasmaD3T1	16SrXXVI	AJ539179	Mauritius
Sugarcane phytoplasmaD3T2	16SrXXVII	AJ539180	Mauritius
Derbid phytoplasma	16SrXXVIII	AY744945	Cuba
Ca. P. malaysianum	16SrXXXII-A	EU371934	Malaysia

 Table 1: 16SrRNA gene sequences of phytoplasma employed in analysis.

Phytoplasma species	Sub-group	Accession	Country	Poinsettia branch-inducing	16SrIII-H	GU004328	USA
Tomoto hig hud	169rll	KT070092	India	Peach X-disease	16SrIII-A	GU004327	Canada
	10311	KT970003		Walnut witches-broom	16SrIII-G	GU004325	Georgia, USA
	16511	K1970081	India	Apple proliferation	16SrX-A	GU004335	Italy
Cauliflower phyllody	16Srll	KC953012	China	Mexican periwinkle virescence	16SrXIII-A	GU004336	Mexico
Tomato big bud	16Srll	KC953016	China	Tomato big bud	16Srl-A	AY803178	Arkansas. USA
Tomato big bud	16Srll	KT970084	India	Chrysanthemum vellows	16Srl-A	AY803170	Germany
Tomato big bud	16Srll	KT970082	India		16Srl A	AV803181	Bolgium
Tomato big bud	16Srll	KT970080	India		10011-A	A1003101	
Tomato big bud	16Srll	KT970078	India	Chrysanthemum yellows	16SrI-B	DQ787851	Italy
Tomato big bud	16Srll	KC953016	China	Primrose virescence	16Srl-B	AY803176	Germany
Sword bean witches-broom	16Srll	KC953015	China	Clover phyllody	16SrI-C	AY803183	Germany
Parthenium virescence	16Srll	KC953014	China	Paulownia witches-broom	16SrI-D	AY803184	Taiwan
Cauliflower witches-broom	16Srll	KC053012	China	Blueberry stunt	16SrI-E	AY803169	Michigan, USA
	160-11	CU004222	Theiland	Apricot chlorotic leaf roll	16SrI-F	AY803166	Spain
	105111	G0004322		Strawberry multiplier	16Srl-K	AY803180	Florida, USA
Cowpea virescence	16Srll	KC953013	China	Aster yellows	16Srl-M	AY803168	Germany
Sesame phyllody	16Srll	GU004362	Thailand	Ipomoea witches-broom	16SrI-N	AY803182	Taiwan
Brinjal little leaf	16SrVI-D	GU004356	India	Peanut witches-broom	16SrII-A	GU004331	Taiwan
Potato witches'-broom	16SrVI-A	GU004316	Canada	Sovbean phyllody	16Srll_C	GU004324	Thailand
Clover phyllody	16SrVI-A	GU004315	Canada	Dioria ashioidaa	160-11 5	CU004324	Itolu
Vinca virescence	16SrVI-A	GU004317	France		10511-E	GUU04346	
Ash yellows	16SrVI-A	GU004329	New York,	Australian tomato big bud	16SrII-D	GU004347	Australia
			USA	Elm yellows	16SrV-A	AY197690	New York, USA
Milkweed yellows	16SrIII-F	GU004340	New York, USA	Cherry lethal yellows	16SrV-B	AY197693	China
Potato purple top-MT	16SrIII-M	GU004333	Montana, USA	Alder vellows	16SrV-C	AY197692	Germany
Clover vellow edge	16SrIII-B	GU004332	Lithuania	Flavescence doree	16SrV-D	AY197685	Italy
Snirea stunt	16SrIII-E	GU004326	New York	Pubus stupt	16SrV E	AV107606	Italy
opirea siuni		00004320	USA USA		1031V-E	AT 197090	italy

Page 5 of 13

American potato purple top wilt	16SrXVIII- B	GU004338	Nebraska, USA
Stolbur-It	16SrXII-A	GU004355	Italy
Pear decline	16SrX-C	GU004363	Italy
Candidatus Phytoplasma fraxini	16SrVII-A	GU004329	USA

	400-2/111-4	011004040	Taiman
Lootan witches'-broom	16Srviii-A	GU004319	Taiwan

 Table 2: SecYgene sequences of different phytoplasma employed in analysis.

Phytoplasma species		Accession No.	Сгор	Country
Picris echioides phyllody		EF193381	Picris echioides	Italy
Flavescence doree	16SrV-D1	AY197664	Grapevine	Italy
Alder yellows	16SrV-C	AY197666	Periwinkle	Italy
Spartium witches-broom	16SrV-C	AY197672	Spartium junceum	Italy
Hemp dogbane yellows	16SrV-C	AY197674	Apocynum cannabinum	USA
Ca. P. ulmi	16SrV-A	AY197675	Ulmus americana	USA
Illinois elm yellows	-	EF183490	Elm	USA
Vinca virescence	-	EF183491	Vinca virescence	USA
Catharanthus phyllody	16SrVI	EF183494	Catharanthus rosea	Sudan
Ca. P. fraxini'	16SrVII-A	EF183492	Ash yellows	New York, USA
Pigeon pea witches-broom	16SrIX-A	EF183495	Pigeon pea	Florida, USA
Gliricidia little leaf	16SrIX	EF186800	Gliricidia	Honduras
Knautia arvensis phyllody	16SrIX	EF186801	Knautia arvensis	Italy
Picris echioides phyllody	16SrIX	EF186802	Picris echioides	Italy
Ca. P. phoenicium	16SrIX-B	EF186803	Almond	Lebanon
Palm lethal yellowing	16SrIV	DQ297677	Palm	Florida
Peach X-disease	16SrIII-A	EF186813	Peach	California, USA
Poinsettia branch-inducing	16SrIII-H	EF186811	Poinsettia	USA
Goldenrod yellows	16SrIII-D	EF186810	Goldenrod	New York, USA
Vaccinium witches-broom	16SrIII-F	EF186809	Vaccinium	Germany
Faba bean phyllody	16SrII-C	EF186817	Faba bean	Sudan
Crotalaria phyllody	16SrII-C	EF186818	Crotalaria	Thailand
Ca. P. aurantifolia	16SrII-B	EF186815	Lime	Oman
Italian alfalfa witches-broom	16SrII-E	EF193380	Alfalfa	Italy
Sesame phyllody	16SrII-A	EF193378	Sesame	Thailand
Ca. P. australasia	16SrII-D	EF193373	grapevine	Australia
Ca. P. mali	16SrX-A	EF193366	Apple	Italy
Ca. P. pyri	16SrX-C	EF193370	Pear	Germany
Apricot aster yellows	-	AY264866	Apricot	Spain
Aster yellows	16Srl-L	AY183686	Tomato	Germany
Blueberry stunt	16Srl-E	AY264863	Blueberry	Michigan, USA

Page 6 of 13

Ca. P. australiense	16SrXII-B	AY376666	Grapevine	Australia
American potato purple top wilt	16SrXVIII-B	EF193362	Potato	Nebraska, USA
Tomato stolbur	16SrXII-A	EF193364	Tomato	Italy
Mexican periwinkle virescence	16SrXIII-A	EF193365	Periwinkle	Mexico
Ca. P. australiense	16SrXII-B	EF193372	Grapevine	Australia
Alfalfa witches-broom	16SrII-D	EF193371	Alfalfa	Oman
Sesame phyllody	16SrII-A	EF193377	Sesame	Thailand
Tomato big bud	16Srl-A	EF193373	Tomato	Arkansas, USA
Tephrosia witches-broom	16SrXII	JF441272	Tephrosia	China
Cleome phyllody	16SrII-A	EF193379	Cleome viscosa	Thailand
Peanut witches'-broom	16SrII-A	EF193375	Peanut	Taiwan
Crotalaria witches-broom	-	EU650182	Crotalaria	China
Cleome witches-broom	-	EU409599	Cleome viscosa	China
Sunn hemp witches-broom	16SrII-A	EF193374	Sunn hemp	Thailand
Sweet potato witches-broom	16SrII-A	EF193376	Sweet potato	Taiwan
Spermacoce exilis phyllody	16SrII-A	KX650616	Spermacoce exilis	China
Celosia argentea	16SrII-A	KX426375	Celosia argentea	China
Tomato big bud	-	KC953010	Tomato	China
Cowpea virescence	-	KC953007	Cowpea	China
Corchorus aestuans	16SrII-A	KX645866	Corchorus aestuans	China
Ipomoea aquatica witches-broom	-	KJ735784	Ater spinach	China
Lactuca sativa witches-broom	-	KJ735772	Lettuce	China
Cauliflower phyllody	16SrII-A	KC953006	Cauliflower	China
Pigeon pea witches-broom	-	FJ560598	Pigeon pea	China
Green gram phyllody	16Srll	AB703244	Green gram	Myanmar
Black gram witches-broom	16SrII	AB703243	Black gram	Myanmar
Parthenium weed witches-broom	16Srll	KU958723	Parthenium	Yunnan
Sword bean witches-broom	16SrII	KC953009	Sword bean	Yunnan
Peanut witches-broom	16SrII	JX871469	Peanut	Yunnan
Cucumber phyllody	16SrII	KY365523	Cucumber	Iran
Sesame phyllody	16Srll	AB703247	Sesame	Myanmar
Lime witches'-broom	16SrII	EF186815	Lime	Oman
Faba bean phyllody	16SrII	EF186817	Faba bean	Sudan
Alfalfa witches'-broom	16Srll	KY365520	Alfalfa	Iran
Crotalaria juncea	16Srll	KJ806618	Crotalaria juncea	Brazil

Mycoplasma-like organism	M74770	Сгор	Country

Table 3: Ribosomal protein gene sequences of different phytoplasmas employed in analysis.

Results

Detection of phytoplasma

The seven CarWB phytoplasma samples collected from different farmers' fields gave positive amplification in PCR for the primer pairs designed to amplify 16srRNA (P1/P7), SecY gene (SecYF2/SecYR1), and rep gene (rp (II) F1A/rp (II) R1A) and confirmed the association of phytoplasma with the carrot witch's broom samples. No amplification was obtained from the non-symptomatic samples. The amplified PCR products of 16SrRNA, SecY gene, and rep gene were cloned and sequenced. The sequences of 16SrRNA, rp gene, and SecY gene of seven CarWB phytoplasma isolates (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM and CarWB7-CM) were deposited in the GenBank (Accession No. MG013978, MH816941, MH816942, MH816943, MH816944, MH816945, MH816946 (16srRNA), MH816947, MH816948, MH816949, MH816950, MH816951, MH816952, MH816953 (Ribosomal protein gene), MG013981, MH844537, MH844538, MH844539, MH844540, MH844541, MH844542 (SecY gene)). The sequence analysis showed that the seven CarWB phytoplasma isolates shared nucleotide similarity of 88.2% to 97.6%, 95.8% to 100% and 93.6% to 100% with 16srRNA, SecY gene, and rp gene, respectively among themselves.

Carrot witches broom phytoplasma 16SrRNA gene sequence analysis

The 16SrRNA gene sequences obtained from the seven isolates of CarWB phytoplasma (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM, and CarWB7-CM) from Karnataka in the current study were compared with twenty-three 16SrRNA gene sequences of Ca. P. australasiae (16SrII) and thirty-eight 16SrRNA gene sequences of different phytoplasma sequences available in the database (Table 1). The 16SrRNA gene sequence of CarWB phytoplasma isolates (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM and CarWB7-CM) shared highest nt identity of 92.9% to 97.9% with Eggplant big bud (JX441321, JX483699), Scaevola witches broom (AB257291), Crotalaria witches-broom (EU650181), Faba bean phyllody (KP869129), Alfalfa phytoplasma (KY449416), Ca. P. australasiae (Y10097), Pear decline (EF193157), Sweet potato little leaf (JQ868446), Ca. P. aurantifolia (U15442) phytoplasmas. Further, CarWB phytoplasma isolates showed very low nt identity of 78.9% to 94.0% with Peanut witches-broom (L33765), Crotalaria phyllody (EF193355) and Cactus witches'-broom (EU099568, EU099556, EU099569, EU099551, EU099552, EU099572 and EU099546) belongs to Ca. P. australasiae (16SrII) group. The phytoplasmas belonged to the different groups showed less than 85% nucleotide identity with CarWB phytoplasma isolates. The result is well supported by phylogenic analysis showing newly characterized CarWB phytoplasma grouped with previously identified phytoplasmas belonging to the Ca. P. australasiae (16SrII) infecting different crops in Indian subcontinents, Australia and Saudi Arabia (Figure 2a). The analysis also showed that Indian carrot infecting phytoplasmas form a monophyletic cluster with Asian-Australasian- Saudi Arabia originated

phytoplasmas and established the close relationship with subgroup 16SrII-D.

Carrot witches broom phytoplasma *SecY* gene sequence analysis

The SecY gene (1.6 kbp) of seven CarWB1 phytoplasma isolates (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM and CarWB7-CM) sequences obtained in the current study were compared with nineteen SecY gene sequences of Ca. P. australasiae 16SrII group isolates and thirty-six SecY gene sequences of different phytoplasmas available in the database (Table 2). The sequence analysis result revealed that, the carrot isolates (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM and CarWB7-CM) shared maximum not identity of 96.3% to 99.5% with Tomato big bud (KT970083, KC953016, KT970078, KT970080, KT970082, KT970084, KC953016, KT970081), Sesame phyllody (GU004362), Cauliflower phyllody (KC953012), Sword bean witches-broom. (KC953015), Parthenium virescence (KC953013); This indicates the SecY gene

amplified from carrot infected witches broom disease belongs to the *Ca*. P. australasiae (16SrII), more specifically to the subgroup 16Sr II-D. The phylogenetic analysis showed that the *SecY* gene of CarWB phytoplasma is more closely clustered to the previously identified phytoplasmas belongs to the group of 16SrII (Figure 2b).

Australian tomato big bud-16SrII-D.GU004347
◆ CarWB7-CM
CarWB6-CM
CarWB5
CarWB4
98_♦ CarWB2
Tomato big bud-[16SrII].KT970078
Tomato big bud-[16SrII].KT970081
CarWB1-SecY
Tomato big bud-[16SrII].KT970083
Tomato big bud-[16SrII].KT970080
Tomato big bud-[16SrII].KT970084
Cowpea virescence-[165rII].KC953013
78 Secama phyliody-[165r11] Gil004362
Sesame phyllody-[16SrII].GU004302
Tomato big bud-[165rII].KC953016
Tomato big bud-16SrII.KC953016
Parthenium virescence-[16SrII].KC953014
99 Tomato big bud-[16SrII].KT970082
Cauliflower phyllody-[16SrII].KC953012
Peanut witches-broom-[16SrII-A].GU004331
Cauliflower witches-broom-[16SrII].KC953012
Picris echioides-[16SrII-E].GU004348
Soybean phyllody (165/TI-C), GU004324
94 Minkweed yellows-[165r11-F].GU004340
top Clover vellow edge=[16SrIII-B].GU004332
r Spirea stunt-[16SrIII-E].GU004326
100 Walnut witches-broom-[16SrIII-G].GU004325
Poinsettia branch-inducing-[16SrIII-H].GU004328
l Peach X-disease-[16SrIII-A].GU004327
Loofah witches-broom-[16SrVIII].AGU004319
Alder yellows-[16SrV-C].AY197692
Rubus stunt-[16SrV-E].AY197696
99 98 Flavescence doree-[165rV-D].AY197685
Cherry lethal vellows-[16SrV-B].AY197693
99 Ash vellows-[16SrVI-A].GU004329
Ca. P. fraxini-[16SrVII-A]. GU004329
Vinca virescence-[16SrVI-A].GU004317
98 [°] Brinjal little leaf-[16SrVI-D].GU004356
Potato witches-broom-[16SrVI-A].GU004316
Clover phyllody-[16SrVI-A].GU004315
Pear decline-[105rX-A].GUU04335
Potato purple top wilt-(16SrXVIII-B).GU004338
99 Stolbur-It-[16SrXII-A].GU004355
Mexican periwinkle virescence-[165rXIII-A].GU004336
Chrysanthemum yellows-[16SrI-B].DQ787851
Primrose virescence-[16SrI-B].AY803176
100 Aster yellows-[16SrI-M].AY803168
Paulownia witches-broom-[16SrI-D].AY803184
Apricot chlorotic leaf roll-[16SrI-F].AY803166
99 Chrysanthemum yellows-[16SrI-A].AY803170
Hydrangea phyllody-[16SrI-A].AY803181
Tomato big bud-[16SrI-A].AY803178
 Strawberry multiplier-[16SrI-K].AY803180
Clover phyllody-[16SrI-C].AY803183
Blueberry stunt-[16SrI-E].AY803169
Figure 2b: Phylogenetic tree based on sequences of the SecY gene.

Carrot witches broom phytoplasma ribosomal protein (rp) gene sequence analysis

The *rep* gene has more variability than the *16SrRNA* gene and a better molecular tool for differentiation of genetically closely related but ecologically distinct phytoplasma strains that are not readily separated on the basis of the highly conserved *16SrRNA* gene sequence. The *rep* gene (1.2 kb) of seven CarWB phytoplasma isolates (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM and CarWB7-CM) sequences obtained were compared with the corresponding region of eighteen *rep* gene sequences of *Ca.* P. australasiae (16SrII) and fourty-nine *rep* gene sequences of different phytoplasmas available in the database (Table 3).

Figure 2c: Phylogenetic tree based on sequences of the ribosomal gene of the CarWB phytoplasma isolates with other phytoplasma strains using the Neighbor-joining algorithm. Horizontal distances are proportional to sequence distances, vertical distances are arbitrary. The trees are un-rooted. A bootstrap analysis with 1000 replicates was performed and the bootstrap percent values more than 50 are numbered along branches.

The rep gene sequences analysis showed that CarWB phytoplasma isolates showed maximum nt identity of 94.2 to 98.8 with Spermacoce exilis phyllody (KX650616), Green gram phyllody (AB703244), Black gram witches-broom (AB703243) and Cucumber phyllody (KY365523). While CarWB phytoplasma showed very low nt identity of 92.6% to 95.1% with Celosia argentea (KX426375), Tomato big bud (KC953010), Cowpea virescence (KC953007), Corchorus aestuans phyllody-(KX645866), Ipomoea aquatica witches-broom (KJ735784), Lactuca sativa witches-broom-(KJ735772), Cauliflower phyllody (KC953006), Pigeon pea witches-broom (FJ560598), Parthenium weed witches-broom (KU958723), Sword bean witches-broom (KC953009), Peanut witches-broom (JX871469) and Sesame phyllody (AB703247) phytoplasma sequences. However, the phytoplasmas belonged to the different groups showed less than 85% of nucleotide identity with CarWB phytoplasma. This indicates the rep gene amplified from infected carrot witches broom samples belongs to the Ca. P. australasiae (16SrII). The phylogenetic analysis showed that the rep

Page 8 of 13

gene of CarWB phytoplasma isolates are more closely clustered with the previously identified phytoplasmas belongs to the group of 16SrII (Figure 2c).

Virtual RFLP analysis

The virtual RFLP patterns of the 16SrRNA gene of seven carrot witches phytoplasma isolates revealed that the CarWB1 (coefficient of similarity 0.93), CarWB2 (0.89), CarWB3 (0.88), CarWB5 (0.89) and CarWB6-CM (0.83) represent a previously un-described subgroup in the group 16SrII. They exhibit different restriction patterns from (Figures 3A-3F) that of the 16SrRNA gene from subgroup 16SrII-D (accession no. Y10097, Ca. P. australasiae). However, the isolate CarWB7-CM (0.87) exhibited restriction pattern different from that of the 16SrRNA gene from subgroup 16SrII-B (accession no. U15442, Ca. P. aurantifolia), while isolate CarWB4 exhibited similar restriction pattern to that of Ca. P. australasiae (accession no. Y10097, similarity coefficient of 1.00). Based on the threshold similarity coefficient for the new subgroup, delineation is set at 0.97 [36]. Therefore, carrot witches broom phytoplasma isolates (CarWB1, CarWB2, CarWB3, CarWB5, CarWB6-CM, CarWB7-CM) showing similarity coefficient less than 0.97 may be considered as a new subgroup under Ca. P. australasiae 16SrII group. The enzymes that distinguish other Ca. P. australasiae 16SrII group isolates reported so far are BstUI and RsaI for CarWB1 (Figure 3A), RsaI, Sau3AI (MboI), HaeIII, TaqI, SspI, HpaI, HhaI distinguishes CarWB2 (Figure 3B and 3B1), Sau3AI (MboI) and AluI distinguishes CarWB3 (Figure 3C), Sau3AI (MboI) and AluI distinguishes CarWB5 (Figure 3d), Sau3AI (MboI), SspI and AluI distinguishes CarWB6-CM (Figure 3E), Alu I and HpaI distinguishes CarWB7-CM (Figure 3F). This was further supported by restriction map of carrot witches phytoplasma isolates obtained from pDRAW32 (AcaClone Software; http://www.acaclone.com) analysis showing significant differences in AluI, BstUI, RsaI, Sau3AI (MboI), HaeIII, TaqI, SspI, HpaI and HhaI with Eggplant big bud (JX483699) and other 13 representatives of subgroups (16SrII- A, B, C, D, F, G, H, I, J, K, L, S, T) belong to 16SrII (Figure 4). This is the first report of Ca. P. australasiae belonged 16SrII affecting carrot in India.

Figure 3B: Virtual RFLP patterns derived from *in silico* digestions, using iPhyClassifier, of F2n/R2 fragments of *16S rRNA* gene from strains of CarWB2 (accession no. MH816941).

Figures 3C and 3D: Virtual RFLP patterns derived from in silico digestions, using iPhyClassifier, of F2n/R2 fragments of 16S rRNA gene from strains of (C) CarWB3 (accession no. MH816942); (D) CarWB5 (accession no. MH816944).

Page 10 of 13

Figure 3E: Virtual RFLP patterns derived from in silico digestions, using iPhyClassifier, of F2n/R2 fragments of 16S rRNA gene from strains of CarWB6 (accession no. MH816945).

Figure 3F: Virtual RFLP patterns derived from *in silico* digestions, using iPhyClassifier, of F2n/R2 fragments of *16S rRNA* gene from strains of CarWB7 (accession no. MH816946) using 17 restriction endonuclease enzymes (left): AluI, BamHI, BfaI, BstUI, DraI, EcoRI, HaeIII, HhaI, HinfI, HpaI, HpaII, KpnI, Sau3AI, MseI, RsaI, SspI, and TaqI. Virtual RFLP patterns of CarWB1 (BstUI and RsaI), CarWB2 (RsaI, Sau3AI (MboI), HaeIII, TaqI, SspI, HpaI and HhaI), CarWB3 (Sau3AI (MboI) and AluI), CarWB5 (Sau3AI (MboI) and AluI), CarWB7 (AluI and HpaI) to distinguishing strain Indian phytoplasmas from other strains in group 16SrII. The restriction fragments were resolved by *in-silico* electrophoresis through 3% agarose gel. MW, WX174 DNA-HaeIII digest.

Recombination analysis

The Recombination analysis was carried by using RDP4, based on the alignment of different (*16SrRNA*, ribosomal protein gene and *SecY* gene) gene sequences of seven CarWB phytoplasma isolates with other respective genes of phytoplasma retrieved from the database was done. The analysis indicated the presence of inter-specific recombination only in 16SrRNA (Figure 5) and there is no recombination was detected in ribosomal protein gene and *SecY* gene of seven CarWB phytoplasma isolates. The recombination breakpoint analysis for 16SrRNA gene of seven CarWB phytoplasma isolates revealed that most parts of their 16SrRNA F2nR2 fragments being descendent from as major *Ca. P. solani*-(16SrXII) (AJ964960) and minor parent *Ca. P. caricae*-(16SrXVII) (AY725234). In the case of CarWB2, the recombination breakpoints were predicted at nucleotides position of 36 and 1630 with an average probability value of 8.319 x10⁻³.

Figure 4: Comparative analysis of virtual restriction sites in *16SrRNA* gene. Sequences of the *16SrRNA* gene of phytoplasma from Carrot are CarWB1 (accession no. MG013978), CarWB2 (accession no. MH816941), CarWB3 (accession no. MH816942), CarWB5 (accession no. MH816944), CarWB6 (accession no. MH816945), CarWB7 (accession no. MH816946) 'Eggplant big bud (JX483699) phytoplasma (AY265209) and *Ca.* P. australasiae phytoplasma (accession no. Y10097,) the important difference in the restriction site of different phytoplasmas.

Further, the recombination breakpoints were detected in CarWB3 at predicted nucleotides position of 36 and 1659 with an average probability value of 7.636 x 10^{-32} . Similarly, in CarWB4, the recombination breakpoints were detected at nucleotides position of 51 and 1040 with an average probability value of 1.465 x 10^{-1} . While in case of CarWB5 the breakpoints for recombination were detected at predicted nucleotides position of 36 and 1659 with an average probability value of 8.25 x 10^{-30} . Further, in case of CarWB6 and CarWB7, the breakpoints were detected at nucleotides position of 36-1659 and 46-1256 with average probability values of 1.573 x 10^{-30} and 6.620 x 10^{-34} , respectively.

Page 11 of 13

Figure 5: Analysis of recombination of *16SrRNA* gene of phytoplasma isolates (CarWB1, CarWB2, CarWB3, CarWB4, CarWB5, CarWB6-CM, and CarWB7-CM) from Carrot: The phytoplasma acronyms given are: Carrot witches broom Phytoplasma (CarWB), *Ca*.P.solani-(16SrXII) (AJ964960) and *Ca*. P. caricae-(16SrXVII) (AY725234). The sequence of indeterminate origin is indicated as "unknown". The bars below the isolate name indicate their genome and the boxes below this with phytoplasma acronyms indicate the approximate position at which recombination has occurred in the genome of phytoplasma isolates.

Discussion

Plant-pathogenic phytoplasmas are unique prokaryotic microbes that lack a cell wall and belong to the class Mollicutes and have been recently classified within the provisional genus "Candidatus phytoplasma" based on the 16SrRNA gene sequence analysis [30]. These phytopathogenic phytoplasmas are known to infect more than 700 economically important plant species belongs to vegetables, cereals, fruits, ornamentals, and forest plants causing huge economic losses worldwide. The infected plants exhibit various kind of symptoms, may be due to the imbalance in different intrinsic factors of the host during host-pathogen interaction [31]. Accurate detection of phytoplasma is a prerequisite for the management of the disease. The nucleic-acid based technique such as polymerase chain reaction (PCR) is routinely used for detecting phytoplasmas in different plants. At present, the molecular analysis of conserved genes, in particular, the 16SrRNA gene is used for the detection, identification, and classification of phytoplasmas [32-34].

In the present study, seven CarWB samples collected from the different farmer's field showed positive amplification with phytoplasma specific primers designed for different genomic segments (*16SrRNA*, *SecY* gene and *rep* gene). Based on sequence information of *16SrRNA*, *SecY* gene and *rep* gene, the CarWB phytoplasmas infecting carrot from Karnataka, India were identified as members of the 16SrII-D and 16SrII-B subgroup belongs to the *Ca.* P. australasiae (16SrII) group [29]. Further, *In-silico* restriction analysis of F2n/R2 fragment of *16SrRNA* gene of CarWB using iPhyClassifier online tools showed that the CarWB phytoplasma isolates are different with respect to having restriction sites for the nine restriction enzymes (AluI, BstUI, RsaI, Sau3AI (MboI), HaeIII, TaqI, SspI, HhaI, and HpaI) [35], which are routinely used for classification of the phytoplasma into groups and

subgroups. According to the proposed 16SrRNA-based phytoplasma classification scheme by applying computer simulated RFLP analysis and the similarity coefficient calculation [36,37], the value of the similarity coefficient between CarWB phytoplasma isolates and Ca. P. australasiae (16SrII-B and16Sr II-D) is ranged from 0.83 to 0.93 and the enzymes that differentiate the CarWB phytoplasma isolates from that of 16SrII phytoplasma group isolates are AluI, BstUI, RsaI, Sau3AI (MboI), HaeIII, TaqI, SspI, HhaI, and HpaI. Generally, it has been accepted that even one restriction site difference (within the 16SrRNA gene F2nR2 region) between phytoplasma strains from previously established subgroups may be considered as a new subgroup [35]. The strains under investigation showed similarity coefficient ranged from 0.83 to 0.93, which is less than to 0.97. Thus the strains (CarWB1, CarWB2, CarWB3, CarWB5, CarWB6-CM, and CarWB7-CM) are new and significantly distinct from those of representative strains of *Ca.* P. australasiae belongs to the 16SrII group reported so far.

For the finer classification within or between the existing 16S group or subgroup of closely related phytoplasma species infecting different crops, several studies have used less-conserved and variable genes (*secA*, *imp*, *tuf*, *ribosomal protein* (*rp*), *secY*, and *SAP11* genes) as molecular markers in conjunction with the *16SrRNA* gene [24,38-43]. The member of phytoplasma, *Candidatus Phytoplasma australasiae* were known to infect chickpea, tomato and sesame in the Indian subcontinent [44-47], The findings from the sequence analysis of *secY* and *ribosomal protein* (*rp*) genes confirmed that CarWB phytoplasma in the current study is having a close relationship to the *Candidatus* Phytoplasma australasiae, revealing the rapid expansion of host range by phytoplasma belongs to *Ca*. P. australasiae 16SrII subgroup.

The recombination analysis suggested that seven CarWB phytoplasma isolates have obtained at least some of its sequence by recombination between *Ca.* P. solani (AJ964960) and *Ca.* P. caricae (AY725234) for the 16SrRNA like ancestors reported from Spain and Cuba, respectively [48,49] but not from India. This suggested that recombination between the parents of the CarWB phytoplasma isolates either occurred before introduction to India or the CarWB phytoplasma isolates present in the country, but is yet to be identified. Recombination is a major mechanism in creating genetic diversity in phytoplasmas and has played a key role in the evolution of wild-type line (OY-W) and mild-symptom line (OY-M) of onion yellows phytoplasma [46,50].

In conclusion, the phytoplasma infection in carrot is increasing in Karnataka State, India. This is one of the most important and alarming signal for its seed production. In the present study, we have characterized phytoplasma belongs to *Ca.* P. australasiae 16SrII group related strain association with carrot witches broom disease from Karnataka, India. This is the first evidence of association of phytoplasma '*Ca.* P. australasiae belonging to an a16SrII group with a carrot from Karnataka State, India. These findings would be more useful for future studies on the disease and its vector management.

Competing Interests

The authors declare that they have no competing interests.

References

1. FAOSTAT (2014) Food and Agriculture Organization of the United Nations.

Page 12 of 13

- 2. Adams IP, Skelton A, Macarthur R, Hodges T, Hinds H et al. (2014) Carrot yellow leaf virus Is Associated with Carrot Internal Necrosis. PLoS ONE 9: e109125.
- Kumar J, Gunapat S, Singh SP, Gadre R, Sharma NC et al. (2013) Molecular characterization and pathogenicity of a carrot (Daucus carota) infecting begomovirus and associated betasatellite from India. Virus Res 178: 478-485.
- McCoy RE et al. (1989) Plant diseases associated with mycoplasma-like organisms. In: Whitcomb R.F., Tully J.G. (eds), The Mycoplasmas, Vol. V, Academic Press, San Diego, pp. 545-640.
- Seemuller E, Marcone C, Lauer U, Ragozzino A, Goschl M (1998) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80: 3-26.
- Duduk B, Bertaccini A (2011) Phytoplasma classification: Taxonomy based on 16S ribosomal gene, is it enough?. Phytopathogenic Mollicutes 1: 3-13.
- Duduk B, Bulajic A, Duduk N, Calari A, Paltrinieri S et al. (2007) Identification of phytoplasmas belonging to aster yellows ribosomal group (16SrI) in vegetables in Serbia. Bulletin of Insectol 60: 341-342.
- Duduk B, Peric P, Marcic D, Drobnjakovic T, Picciau L et al. (2008) Phytoplasmas in carrots: disease and potential vectors in Serbia. Bulletin of Insectol 61: 327-331.
- 9. Duduk B, Calari A, Paltrinieri S, Duduk N, Bertaccini A (2009) Multigene analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. Ann Appl Biol 154: 219-229.
- Munyaneza JE, Lemmetty A, Nissinen AI, Sengoda VG, Fisher TW (2011). Molecular detection of aster yellows phytoplasma and 'Candidatus Liberibacter solanacearum' in carrots affected by the psyllid Trioza apicalis (Hemiptera: Triozidae) in Finland. J Plant Pathol 93:697-700.
- 11. Nisbet C, Ross S, Monger WA, Highet F, Jeffries C (2014) First report of 'Candidatus Phytoplasma asteris' in commercial carrots in the United Kingdom. New Dis Rep 30:16.
- 12. Salehi M, Esmailzadeh SA, Hosseini E, Salehi, Bertaccini A (2016) Molecular and biological characterization of A 16SrII phytoplasma associated with carrot witches' broom in Iran. J Plant Pathol 98: 83-90.
- Orenstein S, Franck A, Kuznetzova L, Sela I Tanne E (1999) Association of phytoplasmas with A yellows disease of carrot in Israel. J Plant Pathol 81: 193-199.
- 14. Weintraub P, Orenstein S (2004) Potential leafhopper vectors of phytoplasma in carrots. Int J Trop Insect Sci 24: 228-235.
- 15. Lee IM, Bottner KD, Munyaneza JE, Davis RE, Crosslin JM et al. (2006) Carrot purple leaf: a new spiroplasmal disease associated with carrots in Washington State. Plant Disease 90: 989-993.
- 16. Marcone C, Lee IM, Davis RE, Ragozzino A, Seemuller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of ribosomal RNA and tuf gene sequences. Int J Syst Evol Microbiol 50: 1703-1713.
- 17. Marcone C, Ragozzino A, Camele I, Rana GL, Seemuller E (2001) Updating and extending genetic characterization and classification of phytoplasmas from wild and cultivated plants in southern Italy. J Plant Pathol 83: 133-138.
- Lee IM, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemuller E (2004) Candidatus Phytoplasma asteris', a novel taxon associated with aster yellows and related diseases. Int J Syst Evolu Microbiol 54: 1037-1048.
- Singh M, Chaturvedi Y, Tewari AK, Rao GP, Snehi SK et al. (2011) Diversity among phytoplasmas infecting ornamental plants grown in India. Bulletin of Insectol 64 : S69-S70.
- Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
- 21. Deng S, Hiruki C (1991) Genetic relatedness between two non-culturable mycoplasmalike organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathol 81: 1475-1479.

- Smart CD, Schneider B, Blomquist CL, Guerra LJ, Harrison NA et al. (1996) Phytoplasma specific PCR primers based on sequences of 16S-23SrRNA spacer region. Appl Env Microbiol 62: 2988-2993.
- Gundersen DE, Lee IM (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:114-151.
- Martini M, Lee IM, Bottner KD, Zhao Y, Botti S et al. (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57: 2037-51.
- Lee IM, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60: 2887-2897.
- 26. Venkataravanappa V, Reddy CNL, Swarnalatha P, Shankarappa KS, Krishna Reddy M (2017) Detection and characterization of 'Candidatus Phytoplasma asteris' associated with little leaf disease of bitter gourd from India by 16S rRNA phylogenetic and RFLP (in vitro and virtual) analysis. Arch Biol Sci 69: 707-714.
- 27. Galtier N, Gouy M, Gautier C (1996) SEA VIEW and PHYLO WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12: 543-548.
- Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874.
- 29. Zhao Y, Wei W, Lee IM, Shao J, Suo X (2009) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59: 2582-2593.
- IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma taxonomy group (2004) 'Candidatus Phytoplasma', a taxon for the wallless, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54: 1243-1255.
- Omar AF (2017) Detection and molecular characterization of phytoplasmas associated with vegetable and alfalfa crops in Qassim region. Journal of Plant Interactions 12: 58-66.
- 32. Cai H, Wei W, Davies RE, Chen H, Zhao Y (2008) Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches, broom phytoplasma group. Int J Syst Evol Microbiol 58: 1448-1457.
- 33. Lee IM, Bottner-Parker KD, Zhao Y, Bertaccini A, Davis RE (2012) Differentiation and classification of phytoplasmas in the pigeon pea witches' broom group (16SrIX): an update based on multiple gene sequence analysis. Int J Syst Evol Microbiol 62: 2279-2285.
- Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5: 1763-1788.
- Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analysis of 16SrRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48: 1153-1169.
- Wei W, Davis RE, Lee IM, Zhao Y (2007) Computer simulated RFLP analysis of 16SrRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57: 1855-1867.
- Wei W, Lee IM, Davis RE, Suo X, Zhao Y (2008) Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58: 2368-2377.
- 38. Bertaccini A, Duduk B (2009) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48: 355-378.
- 39. Zreik L, Carle P, Bove JM, Garnier M (1995) Characterization of the Mycoplasma-like organism associated with Witches-broom disease of lime and proposition of a Candidatus Taxon for the organism, Candidatus Phytoplasma aurantifolia. Int J Syst Bacteriol 45: 449-453.
- 40. Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A et al. (2012) DNA barcoding for identification of 'Candidatus Phytoplasmas' using a fragment of the elongation factor Tu gene. PLoS One 7: e52092.

Page 13 of 13

- 41. Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma. Int J Syst Evol Microbiol 58: 1826-1837.
- 42. Valiunas D, Jomantiene R, Ivanauskas A, Urbonaite I, Sneideris D et al. (2015) Molecular identification of Phytoplasmas infecting diseased pine trees in the UNESCO-protected Curonian spit of Lithuania. Forests 6: 2469-83.
- **43.** Al-Subhi A, Hogenhout SA, Al-Yahyai RA, Al-Sadi AM (2017) Classification of a new phytoplasmas subgroup 16SrII-W associated with Crotalaria witches broom diseases in Oman based on multigene sequence analysis. BMC Microbiol 17: 221.
- 44. Akhtar KP, Dickinson M, Sawar G, Jamil FF, Haq MA (2008) First report on the association of a 16Sr II phytoplasmas with sesame phyllody in Pakistan. Plant Pathol 57: 771.
- 45. Pallavi MS, Ramappa HK, Shankarappa KS, Rangaswamy KT, Wickramaarachchi WART et al. (2012) Detection and molecular characterization of phytoplasma associated with chickpea phyllody disease in south India. Phytoparasitica 40: 279-286.
- Venkataravanappa V, Swarnalatha P, Saha S, Lakshminarayana Reddy CN, Krishna Reddy M (2018) Detection, Characterization and In-Silico

analysis of Candidatus Phytoplasma australasiae Associated with Big Bud Disease of Tomato in India. Proc Natl Acad Sci India Sect B Biol Sci 1: 11.

- 47. Venkataravanappa V, Reddy CNL, Manjunath M, Chauhan NS, Reddy MK (2017) Detection, Characterization and in-Silico analysis of Candidatus Phytoplasma australasiae associated with Phyllody Disease of Sesame. Adv Plants Agric Res 7: 00256.
- 48. Torres E, Botti S, Rahola J, Martin MP, Bertaccini A (2005) Grapevine yellows diseases in Spain: eight years survey of disease spread and molecular characterization of phytoplasmas involved. An Jard Bot Madr 62: 27e133.
- 49. Arocha Y, Lopez M, Pinol B, Fernandez M, Picornell B, Almeida R et al. (2005) Candidatus Phytoplasma graminis' and 'Candidatus Phytoplasma caricae', two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. International Int J Syst Evol Microbiol 55: 2451-2463.
- 50. Nishigawa H, Oshima K, Kakizawa S, Jung H, Kuboyama T et al. (2002) Evidence of intermolecular recombination between extra-chromosomal DNAs in phytoplasma: a trigger for the biological diversity of phytoplasma. Microbiol 148: 1389-1396.