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Introduction 

Utilizing omics methods, toxicology research can gain a deeper 
comprehension of the phenomena that underlie the phenotypic changes brought 
on by various forms of exposure to particular toxicants. However, specialized 
data analysis software is required to analyse the multifactorial omics studies 
data. In this work, we propose a new workflow that combines data integration 
from multiple analytical platforms with factor de convolution. Trimethyltin (TMT) 
exposure of 3D neural cell cultures was used as a case study. A metabolomics 
approach that combined four complementary analytical methods (reversed-
phase LC, hydrophilic interaction LC, hyphenated to mass spectrometry in 
positive and negative ionization modes) was used to simultaneously examine 
the significance of the culture maturation state, the duration of the exposure 
and the concentration of TMT. We were able to break down and quantify the 
influence of various experimental factors on the outcome of the TMT exposure 
using the ANOVA multiblock OPLS (AMOPLS) technique. The maturation state 
and treatment duration made the most significant contribution to the overall 
metabolic variability, as demonstrated by the findings. Despite representing 
the smallest observed modulation among the three factors, the contribution 
of TMT effects was highly statistically significant. The MetaCoreTM pathway 
analysis tool revealed that TMT altered neuronal differentiation and signalling 
processes, biosynthetic pathways and GABAergic and glutamatergic neurons 
in particular. Combining proteomic data proved this, giving the mechanistic 
understanding of this toxicant exposure more credence.

Description

Metabolomics is now a well-established part of the omics approaches 
used to explain neurological disease processes. Since the advent of genomics, 
epigenomics, transcriptomics and proteomics, it has been accepted as 
an evolution. Metabolomics provides a comprehensive view of a system's 
current state as a result of the interaction between the environment and its 
own genetic, transcript and protein profiles and perturbations. It is the final 
step in the cascade of events from genes to living organisms. The relevance 
of systems biology approaches to support decision-making based on a 
better mechanistic understanding of chemical hazards has recently been 
highlighted by efforts to harmonize the attempts to include omics in the field 
of regulatory toxicology. The collection of biological data without the need for 
prior knowledge is a natural fit for untargeted omics workflows, which may 
reveal previously unknown modifications to the systems under investigation. 
For sure, they can possibly turn into an important instrument with regards to 
the investigation of new systems of poisonousness .While metabolomics can 
provide a picture of both long-term and instantaneous reactions of the system 

induced by the stressor under study, proteins require a longer period of time to 
be either synthesized or degraded [1].

Often, a wide range of investigative methods are required for toxicology 
studies aimed at revealing the mechanisms of action of various substances. 
As a result, it is becoming increasingly important to comprehend not only the 
mechanisms by which these compounds may affect biological systems but 
also the key events that are shared by various toxicity pathways so that a 
more rapid assessment of the potential danger posed by compounds can be 
performed. Adverse Outcome Pathways (AOPs) are the foundation of the 
Organization for Economic Cooperation and Development (OECD) framework 
and aim to place mechanistic toxicological data in a context that can be used 
for risk assessment. These important events are at the heart of AOPs. This 
idea creates a new obstacle for the analytical strategy, necessitating strategies 
that can handle multifactorial experimental designs and allow for joint biological 
interpretation of data from various analytical platforms. The information in 
untargeted omics analyses typically consists of thousands of variables [2]. 

Dimensionality reduction techniques have been widely used to 
summarize, investigate and discover information within such a large number 
of signals. This is done with both unsupervised and supervised methods, 
with supervised ones having the advantage of being able to maximize the 
variance between samples from different experimental groups while taking into 
account the experimental design (DOE).Even though a few alternatives have 
been proposed (ASCA, ANOVA-PCA, etc.), classical dimensionality reduction 
methods fail when multiple experimental factors are involved in the design. 
They are unable to offer a single model for interpretation in order to circumvent 
this restriction. ANOVA multiblock OPLS (AMOPLS) was recently proposed as 
an appropriate tool for studying complex omics datasets by providing a single 
model to comprehend the system's behavior and taking DOE information into 
account. Each metabolites cumulative contribution can be evaluated using 
the models explained variance. As a result, it is possible to specifically link 
each compound to the manner in which each experimental factor has been 
influenced. In addition, AMOPLS can be joined to a consensus approach, 
making it possible to evaluate the contribution of various analytical techniques 
to the models variability by combining multiple tables from different methods. 
Consensus AMOPLS was used to combine metabolomics data from various 
LC-MS platforms in this study [3].

In order to maximize information retrieval from toxicology studies, the 
current work focuses on a strategy that combines factor deconvolution with 
multi-omics integration. For instance, phenotypic changes caused by exposure 
to the heavy metal trimethyltin (TMT) in primary 3D rat neural cell cultures 
were investigated. Numerous in vitro and in vivo studies have demonstrated 
that TMT causes neurotoxicity and neuroinflammation. It was decided that this 
substance would be an appropriate model substance for studying the effects of 
neuroinflammation and neurotoxicity based on previous in-house experience 
with it in the 3D rat model. Three distinct aspects of the experiment were taken 
into account the degree of maturation of the cultured cells, the time spent 
exposed and the toxicant's concentration. For the purpose of analysing the 
contents of the cells, a multiplatform metabolomics strategy used four distinct 
but complementary LC-MS setups, which were then followed by a confirmatory 
proteomics analysis. The AMOPLS multivariate analysis, information from 
metabolomics and proteomic analyses and a pathway enrichment tool were 
used to decompose and independently quantify the contribution of each 
experimental factor. As a result, the merged omics signatures were used 
to identify potential toxicity pathways that link the cellular response to TMT 
exposure [4].
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A comprehensive workflow for exploring data from multifactorial, 
multiplatform and multi-omics studies was proposed in this work. It is possible 
to gain a deeper understanding of the intricate cellular changes caused by 
exposure to toxicologically relevant molecules by combining complementary 
biochemical data gleaned from metabolomics. Consider the relative effects 
of maturation stage, treatment duration and concentration by exposing a 
known neurotoxicant to a 3D neural model that is undergoing progressive 
differentiation in culture. A method for comprehensively examining the various 
responses shown to the same toxic substance is the utilization of DOE to 
evaluate the relative contribution of various factors of crucial importance to 
toxicology studies (cell maturation, exposure duration and concentration).
AMOPLS enabled us to evaluate the contribution of each effect separately for 
this purpose. Orthogonal LC-MS methods work together to make it easier to 
look into the chemical space of the sample and provide more information about 
changes in metabolism [5]. 

Conclusion

The findings showed that the neural tissues response to the various TMT 
concentrations tested was unaffected by either the maturation state or the 
duration of exposure. However, the concentration of TMT had a significant 
impact on the system's response, impairing numerous cellular processes 

associated with neuronal differentiation, homeostasis of biosynthesis and 
neurotransmission. Lastly, a pathway enrichment analysis platform supported 
the metabolomics findings by integrating proteomics analyses at the 
biological level. A good illustration of how systems biology various tools can 
be successfully combined in an integrative workflow to address the study of 
multifactorial toxicology experiments is the presented strategy.
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