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Introduction
Prostate cancer is the most common cancer in men from Western 

countries, and in particular from the United States of America [1]. 
Incidences and mortality rates of prostate cancer vary greatly among 
different geographic areas and ethnic groups. In Japan, the incidence 
is still low compared with Western countries. However, figures are 
increasing [2]. Thus, Prostate cancer is the most common cancer in 
men in Western countries , this place having been occupied by stomach 
cancer in 1995 [3]. Most patients present with clinically localized 
disease at the time of diagnosis, and prostate-specific antigen (PSA) and 
transrectal ultrasound are used to aid in biopsy. Several management 
options are available when prostate cancer is diagnosed at an early 
stage, including surgery, cryosurgery, radiation therapy, hormonal 
therapy, and watchful waiting. For advanced prostate cancers, surgical 
or medical ablation of androgens is regarded as the optimal first-line 
treatment [4]. In most patients treated with androgen deprivation, 
however, disease progression will occur and result in a stage referred to 
as hormone-refractory prostate cancer. Development of such hormone-
refractory state involves a complex series of events such as selection 
and outgrowth of preexisting clones of androgen-independent cells, 
adaptive up-regulation of genes that contribute to cancer cell survival 
and growth after androgen ablation [5]. However, this process is not yet 
entirely understood. 

Patients with hormone-refractory prostate cancer (HRPC) 
require new agents. Two trials with docetaxel-based chemotherapy 
demonstrated a significant improvement in overall survival, disease-
free survival, pain control, and PSA response [6,7]. Therefore, the 
United States Food and Drug Administration (FDA) has recommended 
3-weekly docetaxel with prednisone as the first-line regimen for patients
with HRPC. Despite the benefits, survival remains short and most
patients actually do not benefit from docetaxel-based chemotherapy.

Effective second- and third-line treatments are still urgently needed 
and emerging new drugs clearly require evaluation. Although the 
effects of several anticancer drugs for prostate cancer have been 
evaluated in vitro and in animal experiments, most have had little or no 
impact on the survival of patients with HRPC and metastatic prostate 
cancer [8]. One of the reasons for discrepancies between in vivo and in 
vitro experiments is thought to be the disordered arrangement of cells 
within the tumor tissue, in clear contrast to the ordered arrangement 
in 2-dimensional (2D) cultures [9,10]. Thus, preclinical experimental 
models mimicking the clinical characteristics of prostate cancer are 
a high priority for testing new agents against prostate cancer. This 
review covers up-to-date information regarding the significance of 
3-dimensional (3D) culture models, especially multicellular spheroid
(MCS) culture models for identification of mechanisms in prostate
cancer and target molecules for therapy.

Three-dimensional culture models to study tumor biology

The mechanism of drug resistance is associated with overexpression 
of P-glycoprotein (P-gp), a protein efflux pump. Multicellular resistance 
(MCR), which emerges as soon as cells have established contact with 
their microenvironment, is also involved [11]. The development of 
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Abstract
Prostate cancer is one of the most prevalent cancers in men in Western countries, increasing in frequency with 

age through the most advanced years. Patients with localized prostate cancer are generally treated with radical 
prostectomy or radiation therapy. However, treatment of more malignant stages of the disease is problematic. 
Docetaxel-based chemotherapy in men with androgen-independent prostate cancer has been shown to have survival 
benefits but hormonal manipulation and other chemotherapeutic regimens, especially for androgen-independent 
lesions, have uncertain value. While research into the complex pathophysiology of advanced prostate cancer has led 
to identification of mechanisms and target molecules, it nevertheless remains necessary to develop new anticancer 
drugs. Cell culture models that mimic the structure and features of prostate cancer in vivo are necessary for research 
on tumor biology and design of novel anticancer therapies. In this context, 3-dimensional cultures of prostate cancer 
cells, including multicellular spheroid (MCS) cultures, started attracting increasing attention.

The present review provides up-to-date information regarding the significance of MCS culture for identification 
of mechanisms underlying human malignancies, including prostate cancer, and possible targets for prostate cancer 
therapies.
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methods to clarify the mechanisms of tumor microenvironment–
mediated drug resistance is clearly important. Two-dimensional culture 
models have been used widely as in vitro models for drug discovery in 
the field of cancer biology. They are easy and convenient to set up but 
lack tumor tissue features like tumor cell–tumor cell, tumor cell–stromal 
cell, and tumor cell–extracellular matrix (ECM) interactions as well as 
its typical structural architecture. Cancer cells are also labile, and their 
behavior can be modulated by the extracellular microenvironment and 
culture conditions. Comparison between the gene expression patterns 
of tumor tissues and immortalized cell lines has highlighted some 
transcriptional modifications in response to the in vitro environment 
[12-14]. Proteome analysis of 3D compared with 2D colon cancer 
cell cultures revealed a panel of alterations that may affect a wide 
variety of cellular functions related to protein synthesis, proliferation, 
regulation of the cytoskeleton, and apoptosis [15]. In 2D culture 
models, genes associated with cell cycling, metabolism, and turnover 
of macromolecules are up-regulated, showing that tumor cells adapt 
to growth needs and respond to growth factors in the culture medium 
[12,16,17]. On the other hand, tumor cells repress the expression of 
genes that may limit their growth potential or that are not necessary 
for in vitro growth. Thus, the value of 2D culture models for cancer 
research is limited. Importantly, it needs to be stressed that animal 
test systems are indispensable for pharmacokinetic and toxicological 
evaluation of candidate therapeutic compounds. However, the number 
of animal models used in the initial discovery of lead compounds has 
already begun to decline because of ethical and economic concerns, as 
well as inaccuracy for predicting clinical efficacy. The same is expected 
to happen with regard to target validation [18]. 

Some 3D culture models may satisfy the demands comparatively 
well and are thus promising tools for anticancer drug screening [19]. 
Notably, MCS can be cocultured with immune cells to evaluate the 
efficacy of immunotherapy, which progresses to future-oriented culture 
models [20]. The 3D culture models known at present are listed in 
(Table 1). 

MCS culture models of prostate cancer cells 
MCS culture is a 3D culture technique that closely mimics the tumor 

microenvironment. As for the case of other malignancies, MCS culture 

models of prostate cancer cells have been used to study prostate tumor 
biology, tumor cell–stromal cell interactions, and tumor cell responses 
to therapy [13,21-40] Recently, a comprehensive panel of spheroid 
culture models, including normal epithelial cells, their derivatives, 
and classical prostate cancer cell lines, has been reported [41]. As for 
MCS culture methods, spontaneous aggregation, liquid overlay, spinner 
flask, and rotating-wall vessel models have been used. Liquid overlay 
cultures exhibit enhanced functions relative to 2D cultures [23,25,31]. 
We have used round-bottomed plates coated with poly (2-hydroxyethyl 
methacrylate) (poly-HEMA; Sigma. Inc., St. Louis, MO) to monitor 
and manipulate arranged single spheroids at particular growth stages. 
Under some culture conditions, MCS of prostate cancer cell lines 
appear to be induced through enhanced expression of E-cadherin. 
PC-3 (human prostate cancer cell line) cells exhibiting abnormal 
E-cadherin–mediated cell–cell adhesion are unable to form compact 
spheroids or tight aggregates, yet loose aggregation in a liquid overlay 
culture has been reported [13,23,25-31,42]. Moreover, treatment with 
an anti–E-cadherin antibody inhibits spheroid formation of DU-
145 (human prostate carcinoma, epithelial-like cell line) and LNCaP 
(human prostate adenocarcinoma cell line) cells (Figure1). Besides 
its function in the formation of MCS, E-cadherin plays an important 
role in suppression of anoikis [43]. Aggregation of PC-3 cells rather 
than MCS formation occurs on agar- or poly-HEMA–coated plates; 
on Matrigel, a one-cell-thick spheroid is formed that partially induces 
normal differentiation of PC-3 cells [23,25,28]. These findings suggest 
that MCS formation may be dependent on tumor cell adhesion 
molecules and culture conditions. In addition, different MCS formation 
techniques may lead to different MCS phenotypes with different gene 
expression patterns [44]. Thus, it is essential to carefully select the most 
appropriate method. 

DU-145 cells form fused compact spheroids, and both DU-145 and 
LNCaP cells grow at significantly slower rates than in 2D culture [23,25]. 
MCS of LNCaP cells exhibit disordered but tight cell–cell contacts, and 
their characteristics differ according to the location [13]. In two studies, 
the tumor cells of the intermediate zone were found to be positive for 
p27 and poly (ADP-ribose) polymerase 1 (PARP-1), but negative for 
Ki-67 (Figure 2a) [13,45]. These cells thus appear to be quiescent. All in 
all, the structure of a MCS is heterogeneous, with proliferating cells at 
the periphery and necrotic cells at the center [10,13]. Quiescent cells are 
viable but remain in a reversible state of growth arrest. The mechanism 
of their development within MCS remains unclear but appears to be 
a consequence of microenvironmental factors such as deprivation 
of growth factors and/or nutrients [10,13,46]. In general, slow-
growing tumors tend to be more drug- or ionizing radiation–resistant 
than rapidly growing tumors. There is no indication as to whether 
the proportion of quiescent cells is higher in MCS [11]. However, 
the presence and proportion of quiescent cells may be important 
determinants of the efficacy of chemotherapy 

Differential expression of p18INK4c, p21waf1/cip1, and p27kip1 
with respect to their location in the spheroids of EMT6 (mouse 
mammary tumor cell line) and MEL28 (human melanoma cell line) cells 
has also been reported: p21waf1/cip1 is found in the outer, proliferating 
cells, whereas p18INK4c and p27kip1 expression becomes elevated with 
increasing depth [47]. A decrease in all cell cycle regulatory proteins 
such as cyclin-dependent kinases (CDKs), CDK inhibitors (CKIs), and 
cyclins in the innermost spheroid fraction has also been observed [47]. 
These findings suggest molecular regulation of cell cycle progression 
in the inner region of spheroids due to microenvironmental stress 
and hypoxia, which evokes cell cycle arrest via the cyclin-dependent 
kinase inhibitor p27kip1 [48]. Quiescence was found due to marked 

Model Method Description
Multicellular 
spheroid

Spherical aggregate of cells in static or stirred 
suspension culture

Spontaneous 
aggregation 
Liquid-overlay

A small number of cell types forms clusters 
rather than strict spheroids Cells cultured on 
the surface of an agarose gel matrix which 
blocks attachment of the cells

Microcarrier 
beads

Beads support aggregation of attached 
dependent cells to form pseudo-spheroids in 
gyratory and spinner flasks

Spinner flask
Greater quantities of spheroids can be 
cultivated in suspension than in liquid-overlay 
cultures

Gyratory shaker
Cell suspensions in Erlenmeyer flasks 
containing a specific amount of medium are 
rotated in a gyratory rotation incubator

Rotary cell 
culture

The low shear environment provides an 
advantage over static and stirred cultures, 
allowing cells to aggregate, grow like 3D 
structure and differentiate

Cellular 
multilayer

Layers of cells cultured on top of a porous 
membrane

Scaffold-
based culture

Cells cultured in synthetic 3D-simulating 
matrices

Hollow-fiber 
bioreactor

Cells cultured within a network of perfused 
artificial capillaries

Table 1: Summary of three-dimensional culture models [16,18].
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cell contact–dependent up-regulation of p27kip1 in EMT6 spheroids, 
leading to drug or radiation resistance [49,50]. Ki-67 is a nuclear 
protein expressed during all active phases of the cell cycle. Therefore, 
it is expressed in proliferating but not in quiescent cells [10,13,46]. In 
contrast, a dramatic increase of p27kip1 was detected in every cell of the 
MCS in response to serum withdrawal, which is thought to be a specific 
environment [46]. In addition, up-regulation of P-gp in G0/G1-phase 
cells requires expression of p27kip1 but not of p21waf1, suggesting that, 
under stress conditions (for instance, in hypoxia), p27kip1 contributes 
to a cell cycle arrest that is essential for cell survival, whereas P-gp 
contributes to cell survival by helping detoxify waste products [51]. 

PARPs are enzymes present in eukaryotes; these enzymes are 
involved in cell signaling through poly (ADP-ribosyl) ation of DNA-
binding proteins [52,53]. By catalyzing the addition of ADP-ribose 
units to DNA, histones, and various DNA repair enzymes, they play 
multifunctional roles in many cellular processes. PARP-1 (EC 2.4.2.30) 
was the first of this family to be described in association with cellular 
responses to DNA damage [52,53]. PARP-1 has a critical role in the repair 
of DNA single-strand breaks (SSB) through excision repair pathway. 
In addition, PARP-1 binds to DNA double-strand breaks (DSB) and 
activates several proteins involved in homologous recombination repair 
and nonhomologous end-joining pathways. Besides being involved 
in DNA repair, PARP can also act as a mediator of cell death [53]. 
Extensive DNA damage is known to trigger PARP overactivation with 
consequent extensive NAD consumption through ADP-ribose polymer 
synthesis, leading to ATP depletion and induction of necrosis. 

In human malignancies, increased expression of PARP-1 has been 
reported in Ewing’s sarcomas and in malignant lymphomas; conversely, 
decreased PARP-1 expression has been found in breast cancer and 
several other cell lines [53]. High PARP expression in prostate cancer cell 
lines compared to benign cell lines has already been reported, in which 
greater than 90% of LNCaP cells showed positivity for PARP before 
and after treatment with H2O2 [54]. In LNCaP spheroids, expression 
of PARP-1 was detected and confined to the intermediate zone (Figure  
2a) [37,45], but real-time PCR demonstrated that expression of PARP-1 
in 2D cultures is higher than in spheroid cultures. The specific location 
means that PARP maycontribute to the characteristics of the quiescent 
cells within the LNCaP spheroids, being linked with the target molecule 
in prostate cancer treatments. However, [55] reported that in glioma 
spheroids, PARP expression, which is initially diffuse, becomes confined 
to the outer proliferative zone, paralleling the expression of Ki-67. The 
authors speculated that this phenomenon might be consistent with a 
role for PARP in cell proliferation and determination of the biological 
behavior of gliomas. 

Epigenetic mechanisms that can affect gene expression without 
altering the actual sequence of DNA include DNA methylation, 

RNA-associated silencing, and histone modification. These 
phenomena importantly affect gene expression during development 
[56]. Methylation of the C5 position of cytosine residues in DNA is 
recognized as a particularly important epigenetic silencing mechanism. 
Histone modification is another important epigenetic mechanism that 
determines their interactions with other proteins, thereby regulating 
chromatin structure and remodeling. DNA methylation and histone 
modifications related to chromatin remodeling have been intensively 
analyzed in various tumor types [57]. Thus, it is interesting to 
examine the epigenetic state of cancer cells in spheroids. [58] found 
that, similar to spheroids, TSUPr1 cells dynamically change their 
methylation patterns and the expression of E-cadherin as a function 
of the cellular microenvironment. They distinctively speculated that 
the cellular microenvironment selects for cells that have an appropriate 
methylation pattern, and that spheroid formation may increase the 
transcriptional expression E-cadherin, which in turn may drive regional 
hypomethylation of densely methylated CpG islands. This finding is 
very interesting because a methylation-regulated gene in a spheroid 
culture changes within a few days as compared to 2D cultures. A recent 
study by [59] has shown that increased levels of heterochromatin in 
spheroids characterized by histone H3 deacetylation and increased 
heterochromatin protein 1α expression result in improved radiation 
survival and reduced numbers of DNA DSBs and lethal chromosome 
aberrations. A previous report showed that 3D growth of mammary 
epithelial cells reduced histone H3 and H4 acetylation and gene 
expression, although ECM-controlled cell shape was discussed [60]. 
Few studies about DNA methylation in spheroids have been reported. 
Similarly, little is known about the action of DNA methyltransferase 
(DNMT) enzymes. However, preliminary data showed that there are no 
significant differences in long interspersed nucleotide element 1 (LINE-
1) hypomethylation between 2D culture and MCS of LNCaP cells [37]. 

Figure 1: Role of E-cadherin in the formation of a LNCaP spheroid. (A) 
LNCaP cells form spheroids when cultured on poly-HEMA-coated dishes. (B) 
Treatment with an anti- E-cadherin antibody (HECD-1) inhibits LNCaP spheroid 
formation (Takagi et al., unpublished data).

(A) (B)

Figure 2: Localization of PARP-1 in a LNCaP spheroid and structure of a 
multicellular spheroid (MCS). (A) A section of a 7-day spheroid was stained 
with an anti-PARP-1 antibody (A6.4.12; Serotec, Oxford, UK). There is the 
intermediate zone with PARP immunostaining. (B) Structure of a MCS and 
characteristics of the tumor microenvironment. The structure of the spheroid 
favors genetic and epigenetic alterations.

(A)

(B)
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The microenvironment of solid tumors such as prostate cancer 
is characterized by hypoxia, low extracellular pH, and nutrient 
deprivation. Under hypoxia, tumor cells increase expression of various 
genes, for instance those contributing to angiogenesis, partially through 
hypoxia-induced factor 1 (HIF-1). On the other hand, genes involved in 
cellular adhesion and DNA repair are decreased [61]. Down-regulation 
of mutL homologue 1 (MLH-1) in 2D cultures of EMT-6 cells under 
hypoxic conditions has been detected, with PM2 expression being 
unchanged [62]. However, down-regulation of PM2 was detected in 
EMT-6 spheroids. These results suggest that tumors can down-regulate 
DNA mismatch repair as a result of a series of microenvironmental 
factors, which results in increased resistance to alkylating agents. It 
has been hypothesized that hypoxia may influence local epigenetic 
alterations, leading to inappropriate silencing and reawakening of 
cancer genes [63]. A reduction of 5-methylcytosine in xenografts 
compared to the levels in the same cancer cell lines in vitro has been 
reported, providing direct evidence that epigenetic events in solid 
tumors may be modulated by microenvironmental stress [64]. In several 
mammalian cell lines, hypoxia increases globaldimethylated histone 
H3 lysine 9 (H3K9me2) expression through histone methyltransferase 
G9a, leading to inhibition of gene expression [64].

These findings suggest that epigenetic alterations in spheroids may 
be linked to their microenvironment. Whether activation or stimulation 
of anticancer drug resistance–related genes such as MDR-1 is brought 
about by epigenetic events is an intriguing possibility that needs to be 
analyzed.

Applications to prostate cancer therapy

Like solid tumors in vivo, MCS is characterized by hypoxic 
regions, The presence of hypoxic tumor microenvironment correlates 
with increased tumor invasiveness, metastases, and resistance to 
chemotherapy and radiotherapy [65]. Chemotherapeutic drug 
resistance in cancer cells under hypoxia is partially caused by reduced 
toxicity because of the absence of molecular oxygen. Hypoxia and 
nutrient deprivation can also promote mitochondrial reactive oxygen 
species (ROS) production, which result in modulation of ROS levels 
and energy metabolism to activate many signalling pathways leading to 
HIF family protein stabilization and activation [66]. Chemotherapeutic 
drug resistance is caused by HIF family–induced inhibition of cell cycle 
progression and proliferation. 

Androgen ablation leads to an initial favorable response in patients. 
However, most relapse with an aggressive form of the disease known 
as castration-resistantor hormone-refractory prostate cancer. As 
critical molecular events that lead to prostate cancer cell resistance 
to androgen-deprivation therapy have been reported, there is also a 
possibility that hypoxia may be involved in the transition to androgen 
independence. Crosstalk between the androgen receptor and HIF-1α in 
prostate cancer cells has been reported [67]. Thus, methods of targeting 
the microenvironment, especially hypoxia, have been investigated, e.g., 
to increase the oxygen supply to the tumor hypoxic area, to exploit 
the microenvironment by using bioreductive drugs, and to exploit the 
biological response to hypoxia by targeting HIF-1α.  

PARP has attracted considerable attention as a therapeutic target for 
various diseases including cancer. Enhanced PARP-1 expression and/
or its activity has been shown in several tumor cell lines, contributing 
to resistance to genotoxic stress and ability to survive exposure to 
DNA-damaging agents [52,53]. Inhibition of PARP-1 thus enhances 
the efficiency of alkylating agents and ionizing radiation [53]. These 
results have stimulated the development of specific PARP-1 inhibitors 
as potential chemoand radiosensitizers. Several small-molecule 

PARP inhibitors have indeed been synthesized and introduced into 
the clinic for treatment of cancer patients [53]. Research into breast 
cancer 2 susceptibility protein (BRCA2)-deficient cells, which are 
highly sensitive to inhibitors of PARP, has provided the basis for new 
therapeutic approaches [53]. Recently, a PARP inhibitor has been 
reported to radiosensitize DU-145 cells under hypoxia [68]. Like PARP, 
other proteins expressed by quiescent cells in MCSs may constitute 
targets for prostate cancer therapy.

The cancer stem cell (CSC) theory has emerged as a paradigm 
shift in our understanding of cancer as a disease of stem cells. A 
small subset of cancer cells within the tumor mass has the exclusive 
capacity to divide and expand the CSC pool and to differentiate into 
nontumorigenic, more differentiated cancer cell lineages. The existence 
of these small subsets of cells is responsible for tumor recurrence and 
metastasis. Thus, effective therapeutics should target rare CSCs that 
sustain tumor malignancy [69]. Such small subsets have been detected 
not only in malignancies of the blood but also in solid tumors in the 
brain, breast, and prostate, among others. Recent studies with prostate 
cells have also shown that nonmalignant immortalized cell lines and 
malignant cell lines contain a subset of cells with stem cell properties. 
In the spheroid culture system, nonmalignant and malignant human 
hTERT-immortalized prostate epithelial cells have been reported to 
maintain high CD133 expression [70]. The spheroid culture methods 
appear to contribute to the identification of CSCs from the prostate, 
which may be a new target for prostate cancer therapy. 

Summary
MCS culture models have become a mainstream culture model for 

tumor biology and identification of anticancer resistance mechanisms 
as an alternative to the classical 2D culture models that poorly reflect 
the structural characteristicsseen in vivo. MCS culture models better 
mimic the growth characteristics of in vivo solid tumors. Like other 
solid tumors, prostate cancer creates a microenvironment characterized 
by hypoxia, acidosis, and nutrient deprivation, which collectively 
lead to tumor genetic and adaptive changes (Figure 2b). The tumor 
microenvironment correlates with prostate cancer invasiveness, 
metastasis, and resistance to radiotherapy and chemotherapy. Hypoxia 
may also be involved in the transition of prostate cancer to androgen 
independence. MCS culture models are a good model for understanding 
the mechanisms of resistance to chemotherapy, radiotherapy, and 
androgen ablation, and discovery of new targets for prostate cancer, 
especially androgen-independent cancer. Our review has highlighted 
the characteristics of prostate cancer MCS (p27 and PARP expression, 
and epigenetics), and underlined the tumor microenvironment as target 
for prostate cancer therapy. MCS culture models appear to contribute to 
the identification of CSCs from the prostate. 

Further studies are needed to clarify mechanisms such as epigenetic 
regulation, to better characterize the formation of MCS, and to apply 
this knowledge into prostate cancer biology and the discovery of new 
targets for prostate cancer.
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