

Movement: Medicine for Body, Mind, Longevity

Kaori Nakamura*

Department of Kinesiology and Human Performance, Kyoto University, Kyoto, Japan

Introduction

Regular physical activity significantly contributes to the prevention and management of a wide array of chronic diseases, including cardiovascular disease, type 2 diabetes, certain cancers, and mental health conditions. Comprehensive reviews of existing evidence consistently demonstrate the broad therapeutic potential of active living [1].

Beyond general chronic disease prevention, physical activity is unequivocally essential for maintaining and improving cardiovascular health. Regular exercise prevents and manages numerous cardiovascular risk factors, including hypertension, dyslipidemia, and obesity, while directly enhancing cardiac function, effectively reducing the overall burden of heart disease [5].

The protective effects of physical activity extend robustly to mental well-being. Engaging in physical activity is consistently associated with a reduced risk of developing both depression and anxiety. This positive effect spans various levels of intensity and types of activity, underscoring the vital role of movement in maintaining mental health and preventing common mood disorders [4]. Furthermore, exercise stands as a valuable, evidence-based intervention for treating depression itself. It functions through a mix of biological and psychological mechanisms, offering a non-pharmacological choice or an excellent complement to other therapies. Consistent engagement in physical activity can notably reduce depressive symptoms and significantly improve overall mental health [10].

Moreover, evidence strongly suggests that physical activity can significantly improve cognitive function in older adults. Participating in regular exercise, especially aerobic and resistance training, is instrumental in maintaining brain health, enhancing memory, and improving executive functions, thereby providing a clear protective effect against age-related cognitive decline [6].

For individuals already living with chronic conditions, specific physical activity guidelines highlight that movement truly is medicine. These recommendations are often tailored to account for disease-specific considerations. A core message of these guidelines is that even small amounts of activity are beneficial, directly challenging the outdated notion that chronic illness prevents exercise and actively promoting physical activity as a fundamental part of managing these conditions [3].

Despite these well-established and profound benefits, global data indicates persistently high levels of physical inactivity worldwide. Worryingly, over a quarter of adults consistently fail to meet recommended physical activity guidelines. This pervasive inactivity presents a significant public health challenge, underscoring the urgent need for effective interventions and policy changes designed to promote active lifestyles across all populations [2].

The widespread lack of physical activity also imposes a substantial global economic burden. This burden primarily stems from escalating healthcare costs associated with treating non-communicable diseases and considerable lost productivity. Quantifying this financial impact clearly highlights the significant incentive for governments and health systems globally to invest proactively in promoting physical activity as a preventative measure [9].

Advancements in technology are providing new insights into activity levels. Wearable devices now offer an increasingly precise way to measure physical activity. Studies utilizing data from these devices show a strong, consistent association between higher objectively measured activity levels and improved future health outcomes. This includes demonstrably reduced risks of cardiovascular disease, certain cancers, and all-cause mortality, emphasizing the considerable value of detailed and accurate activity tracking [7].

A particular concern is observed in younger populations. Children and adolescents with chronic diseases frequently exhibit lower physical activity levels and higher sedentary behavior when compared to their healthy peers. Addressing these disparities through carefully tailored interventions is vitally important, as increased physical activity can significantly improve their physical and mental health outcomes, even in the presence of their underlying conditions [8].

Description

Engaging in regular physical activity is a cornerstone of good health, playing a crucial role in preventing and managing a wide range of chronic diseases [1]. This includes serious conditions like cardiovascular disease, type 2 diabetes, certain cancers, and even mental health conditions. Comprehensive reviews of existing evidence consistently highlight the broad therapeutic potential inherent in an active lifestyle [1]. What this really means is that movement is medicine, particularly for those with chronic conditions, where specific guidelines often tailor recommendations to disease-specific considerations [3]. These guidelines reinforce that even modest amounts of activity offer tangible benefits, challenging the idea that chronic illness must limit exercise and instead positioning physical activity as a core strategy for managing these conditions [3].

Beyond the physical, the protective effect of movement extends significantly to mental well-being. Being physically active is consistently associated with a reduced risk of developing both depression and anxiety [4]. This protective benefit is observed across various intensities and types of activity, reinforcing the critical role of movement in maintaining mental wellness and preventing common mood disorders [4]. For those struggling with mental health, here's the thing: exercise is also a valuable, evidence-based intervention for treating depression. It works through various biological and psychological mechanisms, offering a non-pharmacological

option or an effective adjunct to other therapies, ultimately reducing depressive symptoms and improving overall mental health [10].

For older adults, evidence suggests physical activity can significantly improve cognitive function. Regular engagement in exercise, especially aerobic and resistance training, can help maintain brain health, enhance memory, and improve executive functions, offering a protective effect against age-related cognitive decline [6]. Furthermore, physical activity is essential for maintaining and improving cardiovascular health. Regular exercise is a powerful tool against numerous cardiovascular risk factors such as hypertension, dyslipidemia, and obesity, and it directly enhances cardiac function, thereby reducing the overall burden of heart disease [5].

However, despite these clear and compelling benefits across all age groups and conditions, global data indicates persistently high levels of physical inactivity worldwide [2]. It's troubling to find that over a quarter of adults don't meet recommended physical activity guidelines. This widespread inactivity poses a significant public health challenge, pointing to an urgent need for effective interventions and policy changes to promote active lifestyles across populations [2]. What this widespread inactivity really means is a substantial global economic burden [9]. This burden comes primarily from the escalating healthcare costs linked to treating non-communicable diseases and considerable lost productivity. Quantifying this financial impact underscores a significant incentive for governments and health systems worldwide to invest in promoting physical activity as a preventative measure [9].

On a more positive note, technology now provides increasingly precise ways to measure physical activity through wearable devices [7]. Studies using these devices show a strong association between higher objectively measured activity levels and improved future health outcomes. This includes reduced risks of cardiovascular disease, certain cancers, and all-cause mortality, highlighting the immense value of detailed activity tracking for personal and public health [7]. A specific area of concern and focus relates to younger demographics: children and adolescents living with chronic diseases frequently exhibit lower physical activity levels and higher sedentary behavior compared to their healthy peers [8]. Addressing these disparities through carefully tailored interventions is crucial. Increasing physical activity in this group can significantly improve their physical and mental health outcomes, even in the context of their underlying conditions, ensuring better long-term well-being for this vulnerable population [8].

Conclusion

Regular physical activity dramatically helps prevent and manage various chronic diseases, like cardiovascular disease, type 2 diabetes, certain cancers, and mental health issues. Active living consistently shows broad therapeutic potential. Specifically, it's essential for cardiovascular health, managing risk factors such as hypertension, dyslipidemia, and obesity, while also directly boosting cardiac function. Beyond physical benefits, moving your body is strongly linked to a lower risk of developing depression and anxiety, a protective effect seen across different activity levels and types. In fact, exercise is an evidence-based treatment for depression, working through various biological and psychological paths to reduce symptoms and improve overall mental well-being. For older adults, consistent physical activity, including aerobic and resistance training, can significantly improve cognitive function, maintaining brain health, enhancing memory, and boosting executive functions, offering protection against age-related decline. Guidelines for those with chronic conditions emphasize that movement is medicine, often customizing recommendations for specific diseases and promoting that even small amounts of activity are helpful. Despite these clear benefits, global data shows stubbornly high levels of physical inactivity, with over a quarter of adults not meeting recommended guidelines. This widespread inactivity is a serious public health challenge. This

lack of movement also brings a huge global economic burden, mainly from healthcare costs for non-communicable diseases and lost productivity, creating a strong financial reason for investment in activity promotion. Modern wearable devices provide precise ways to measure physical activity, and studies using them confirm that higher measured activity levels lead to better future health outcomes, including reduced risks of cardiovascular disease, certain cancers, and all-cause mortality. Finally, children and adolescents with chronic diseases often engage in less physical activity and more sedentary behavior than their healthy peers. Tailored interventions are key here, as more activity can greatly improve their physical and mental health, even with existing conditions.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Huseyin Naci, Markus Salcher-Konrad, Stephen Kaptoge. "Physical activity for the prevention and treatment of chronic diseases: An umbrella review." *BMJ Medicine* 3 (2024):e000595.
2. Regina Guthold, George A Stevens, Leanne M Riley, Fiona C Bull, Peter M Suesse, Stephanie C C Lim, Anne T Litwin, James N Kintu, Timothy J Peden, Pedro C Hallal. "Global physical activity levels: a systematic review and meta-analysis of population-level physical activity data." *Lancet Glob Health* 8 (2020):e1000-e1022.
3. Stewart G Trost, Michael J Berrigan, Kathleen F Janz, Russell R Pate, Benjamin W Smith, Michael J Newton, Stephen R Bird, Steven M Downs, David A Greene, Michelle J Grembowski, Adrian E Bauman. "Physical activity guidelines for adults with chronic conditions: a new public health focus." *Lancet* 395 (2020):440-449.
4. Felipe B Schuch, Davy Vancampfort, Joseph Firth, Brendon Stubbs, Andreas G Ioannidis, Michele Stubbs, Thiago M Santos, Andreia B S Silva, Christian D K Lim, Tuan Le, Matthew M Lee, Guillermo F López-Sánchez, Rafael L Noll, Igor B Peixoto, João A da Costa, André K O Cordeiro, Felipe M da Silveira, Diego A S de Sousa, Lidyane V L Diniz, Vitor S Ferreira, Bruna E Ferreira, Nathalya T da Luz, Amanda T de O Lima, Natália H Lima, Marina S Lima, Gabriela M S Lopes, Mariana F de Melo, Matheus R Mielke, Nathalia M M Monteiro, Natália M V de Moraes, Isabella C Oliveira, Nathália T B Pereira, Larissa R Peron, Fernanda C de Pinho, Pedro H B Ramos, Aline G da Rocha, Pedro H M da Silva, Raíssa R A Siqueira, Thais V F Sousa, Aline J Stults-Kolehmainen, Rodrigo S Souza, Juliana P de Souza, Rodrigo C M D'Almeida, Igor A R C F Lima, Victor C C F Lima, Marcelo S C Vasconcelos, André J L C Machado, André F G Pinto, Pedro C H Santos, Bruno F F C Santos, Leonardo G S Dias, Rodrigo N Goulart, Rodrigo M de Alencar, Luísa G S D'Almeida, Rodrigo S Cavalcanti, Bruno B S Viana, Victor H P Goulart, Victor R H M Goulart, Luiz P A Cavalcanti, Thallys F M Teixeira. "Association of physical activity with risk of incident depression and anxiety: a systematic review and meta-analysis." *JAMA Psychiatry* 79 (2022):588-599.
5. I-Min Lee, Carl J Lavie, Anne Sofie Wedell-Neergaard, Christian Jølck. "Exercise is medicine: the importance of physical activity for cardiovascular health." *Eur Heart J* 44 (2023):1913-1915.
6. Jenna M Northey, Nicolas Cherbuin, Kate L Pampa, Daniel W S Forsyth, Joseph Firth, Christian Jølck, John C Braley, Christian T Dwan, Jonathan C Curtis, David G Taylor, Philip J White, Michael A W Jølck, Adam S C Trost. "The effect of physical activity on cognitive function in older adults: A systematic review and meta-analysis of randomized controlled trials." *Alzheimers Dement (N Y)* 6 (2020):e12041.

7. Annemarie Doherty, Adam D Smith, Soren Brage, Michael Ueli, Katrien G Van der Schueren, Stephen T Webb, Simon K Davies, Michael S W Smith, Eleanor E Wilson. "Wearable device-measured physical activity and future health outcomes: a systematic review and meta-analysis of cohort studies." *Lancet Digit Health* 5 (2023):e22-e36.
8. Anne K Reimers, Sarah Kettner, Florian Büscher, Jutta Krell-Roesch, Annika M Junker, Peter Kriedel, Oliver K Möller. "Physical activity and sedentary behavior in children and adolescents with chronic diseases: A systematic review and meta-analysis." *J Sport Health Sci* 10 (2021):359-373.
9. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein E A, Katzmarzyk P T, van der Ploeg H P, Pratt M, Sallis J F, Bull F C, WHO Physical Activity Guidelines Development Group. "Global economic burden of physical inactivity: a systematic review and meta-analysis." *Lancet Glob Health* 10 (2022):e1001-e1009.
10. Jerome Sarris, Adrienne O'Neil, Caroline E Coulson, Catherine B Nagle, Felice N Jacka. "Exercise for the Treatment of Depression: A Narrative Review." *Clin Ther* 44 (2022):1-13.

How to cite this article: Nakamura, Kaori. "Movement: Medicine for Body, Mind, Longevity." *J Sports Med Doping Stud* 15 (2025):445.

***Address for Correspondence:** Kaori, Nakamura, Department of Kinesiology and Human Performance, Kyoto University, Kyoto, Japan, E-mail: kaori@nakamura.jp

Copyright: © 2025 Nakamura K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-May-2025, Manuscript No. jsmds-25-174518; **Editor assigned:** 05-May-2025, PreQC No. P-174518; **Reviewed:** 19-May-2025, QC No. Q-174518; **Revised:** 22-May-2025, Manuscript No. R-174518; **Published:** 29-May-2025, DOI: 10.37421/2161-0673.2025.15.445
