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Abstract
Motifs are repeated patterns of short sequences usually of varying lengths between 6 to 20 bases. Within 
Deoxyribonucleic Acid (DNA) sequences, these motifs constitute the conserved region of most common signatures 
for recognizing protein domains that are relevant in it evolution, function and interaction. The Gibbs sampling is 
a Markov Chain Monte Carlo (MCMC) algorithm which has been applied in the past to discover motifs in DNA 
sequences. A problem with this technique is the profusion of iterative operations in the sampling process because it 
progressively chooses new possible motif positions from a continuous randomize sampling in DNA sequences. We 
applied an Improved Gibbs (iGibbs) sampling algorithm on Breast Cancer (brca) human disease DNA sequences 
obtained from https://www.ncbi.nlm.nih.gov/nuccore to overcome this unwieldy iteration by altering the processes to 
obtain a reduced runtime and also achieve an accurate satisfactory motif result. The methodology applied in iGibbs 
algorithm takes an input of fasta or gbk DNA file and creates a list of all nucleotides to predict a random sampling 
starting position. It applies motif length, lesser iterative value and further computes the probability and position 
ranking scores using Position Weight Matrix (PWM). The algorithm was implemented using Python, Python(x,y) 
and Biopython. The iGibbs algorithm was evaluated using varying motif lengths of 12, 18 and 24 on different base 
lengths of 5,000, 10,000 and 15,000 with different iteration levels. The result showed that the iGibbs returned a 
better average runtime of 7, 10 and 23 seconds respectively compared to 12, 32 and 60 seconds respectively in 
the existing Gibbs sampling algorithm found at http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html. The accuracy of the 
motif result was checked using the hamming distance for finding the contiguous string and minimum edit distance 
into consensus sequences.
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Introduction
A motif is a consensus pattern common to a set of Deoxyribonucleic 

Acid (DNA), Ribonucleic Acid (RNA), or protein sequences that 
share a common biological property, like functioning as binding sites 
for a particular regulatory protein. Sequence motif discovery is one 
of the fundamental concerns in bioinformatics that has important 
applications in locating regulatory sites and drug target identification. 
It was applied in the study for extraction of structured motifs (several 
words with well-defined gaps) hence is particularly interesting because 
of its application to detection of binding sites. Generally, motifs are of 
varying short length of about 6 to 20 base pairs (bp) [1].

Biological data is interlinked and very complex, thus, managing, 
accessing and presenting this data in an intelligible form is a critical task. 
Computer scientists are in the continuous need of creating information 
systems and tools that will allow biologists to effortlessly make relevant 
use in simplifying their tasks. The evolution of computer through the 
enhance speed of parallel programming and execution has drastically 
increased the development on biological knowledge. There are basically 
two types of general purpose motif finding algorithms: sample driven 
approaches identify the locations of the motif occurrences directly 
while pattern driven approaches take advantage of the assumption that 
a motif can be specified by a central pattern and use it to reduce the 
search space [2].

The aim of this study is to improve on the efficiency and performance 
of Gibbs sampling algorithm for motif discovery in DNA sequences. In 
order to achieve this, the objectives are: (i) randomizing and selection 
of motif positions from the DNA sequences using Python, Biopython, 
and QtDesigner for Graphical User Interface (GUI), (ii) improving the 
Gibbs Sampling Algorithm using a Position Weight Matrix (PWM) 

to randomly select possible locations and statistically change those 
locations to converge at the best possible hidden motif and (iii) the use 
of lesser iterative loops to achieve an improved runtime and accurate 
motif result.

The iterations in Gibbs sampler consists of numerous sub-steps 
and each step having its own transition probability distribution 
indicating that for an E-dimensional model space each iteration will 
consist of E subtypes for each parameter [3]. Knowledge can be said 
to be frightening until we understand it more, this work addresses 
the relevance of using the iGibbs sampling algorithm whose result 
is important to solving motif discovery problems by enhancing the 
knowledge of bioinformatics experts in the areas of design, modeling 
and prediction from a DNA motif data. Therefore, this study makes 
motif discovery much comprehensible and less complicated.

Materials and Methods
Materials

In a motif discovery process, the knowledge of utilizing all the 
different processes as facts to infer the pattern or sequence of the 
motif in DNA sequence is paramount. These facts are referred to as 
the central dogma of molecular biology which is mainly focused on 
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how the genetic information contained in the Deoxyribonucleic Acid 
(DNA) can be processed to provide a meaningful protein sequence [4].

Alignment in the field of bioinformatics is a way of arranging 
sequences of Deoxyribonucleic Acid (DNA), Ribonucleic Acid 
(RNA) or protein in order to identify regions of similarity that may 
be consequences of functional, structural or evolutionary relationship. 
Very short or very similar sequences can be aligned by hand; however, 
most interesting problems require the alignment of lengthy, highly 
variable or extremely numerous sequences that cannot be aligned 
solely by human effort. Instead, human knowledge is applied in 
constructing algorithms to produce high quality sequence alignments, 
and occasionally in adjusting the final results to reflect patterns that 
are difficult to represent algorithmically (especially in nucleotide 
sequences) [5].

A Multiple Sequence Alignment (MSA) is used to align multiple 
sequences at a time; it is an expansion of the pairwise alignment. It 
allows more than two sequences to be aligned and also the analysis of 
evolutionary relationship between the many aligned sequences. MSA 
can be applied as progressive alignment which can be described as a 
method that manages sequence alignment by passing them through 
stages continuous alignments. In the selection of the best multiple 
sequence alignment using the conventional weight matrix, it is assumed 
that the probability of each base is independent of its neighbouring one 
[6,7].

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) approach 
simply known as “Markov Chain”, which is a chainlike process. Gibbs 
Sampling is an iterative procedure that discards one sample after 
each steps of iteration and replaces it with a new one. It proceeds 
more slowly and chooses new sample at random increasing the odds 
that it will converge to the correct solution. The objective will be to 
identify the best pattern, defined as the most probable motif sequence 
pattern. A pattern is obtained by locating the alignment that maximizes 
the ratio of the corresponding pattern probability to background 
probability. The Markov chain Monte Carlo is a method to sample a 
given multivariate distribution π* by constructing a suitable Markov 
chain with the property that it is limiting; invariant distribution is the 
target distribution π* In most problems of interest, the distribution π* is 
absolutely continuous and, as a result, the theory of MCMC methods is 
based on that of Markov chains on continuous state spaces outlined as 
shown in the handbook of computational statistics [8-10].

In a study of an efficient algorithm for identifying DNA motifs, 
the problem of combining the voting algorithm and pattern matching 
algorithm to find exact motifs exists. Therefore, the representation of 
motif was taken as regular grammar, matrix and string, to compute 
the hamming distance for finding the contiguous string. The algorithm 
constructs neighborhood and matching pattern in the sequences to 
enable selection of a set of possible motif candidate [11].

Motif Containment and Information (MCOIN) algorithm 
incorporates content as information-based heuristic to automatically 
determine the most likely motif width as opined by Kilpatrick et al. 
[12]. The MCOIN makes use of threshold parameter values between 0 
and 1 to estimate the true motif width. It also applied the divergence 
for two discrete probability distributions, to compute Position Weight 
Matrix (PWM).

Motif extraction mechanism in Makolo et al. [13] termed STGEMS 
algorithm showed that setting of a threshold p-value position weight 
matrix, which can be achieved by exhaustive parameter optimization 
and the use of geometric mean to calculate similarity function (hyper-

geometric scoring) was applied with distance metric to extract motifs 
of P. falciparum which is said to have presence of highly repetitive 
sequences. This further shows a better approach to handling sequences 
with highly repetitive backgrounds.

In relation to documents topic and word count, the use of Sparse 
Latent Dirichlet Allocation by Yao et al. [14] to further improve 
the complexity of Gibbs sampling, by dividing the full conditional 
probability mass into three parts and employed an approximate 
sampling scheme to change the document-topic count and word-topic 
count respectively. Although the relative speedup compared to standard 
CGS (Collapsed Gibbs Sampling) seems promising. Furthermore, 
Canini et al. [15] proposed two online inference algorithms: incremental 
Gibbs sampler and particle filter. In incremental Gibbs sampler, only 
particular words in the “rejuvenation sequence” are sampled in each 
of the iteration performed. Thus, the choice of rejuvenation steps 
determines the runtime of the incremental Gibbs sampler. The particle 
filter introduced a re-sampling strategy to optimize the Gibbs sampler, 
however, to implement this algorithm efficiently a special data structure 
has to be designed and maintained in memory.

The use of dynamic programming sampling strategy in terms of 
efficiency, convergence and perplexity to significantly improve the 
efficiency of collapsed Gibbs sampling on large data sets by presenting 
a parallelization to further improve the efficiency. Collapsed Gibbs 
Sampling (CGS) is also Markov-chain Monte Carlo Method which is 
used in Latent Dirichlet Allocation (LDA) for generative integrals in 
probabilistic generative model. The CGS was used as Efficient Collapsed 
Gibbs Sampling (ECGS) algorithm in order to speed up the estimating 
procedure solely to reduce the number of iterations [16].

Oistein [17] made use of the application of Gibbs Sampling in the 
replacement of counts of single verbs and nouns with the counts of their 
respective containing clusters, which requires a unique set of clusters 
as experiment which ran Gibbs sampler 5 times, each time letting the 
sampler go through 100 iterations before sampling. It finally ‘burn-in’ 
in order to let the system reach a state that should not be affected by 
initialization, then drawing 20 samples from each run with 5 iterations 
that worked well in prior work. Considering three clusters of samples 
Si of four elements xi:

S1={{x1, x2}, {x3, x4}}    (1)

S2={{x1, x3, x4}, {x2}}                (2)

S3={{x1, x4}, {x2, x3}}                (3)

Using a linking matrix M=(mij) for positions i and j, where:

mi, j=1 (if xi and xj belong to the same cluster) i.e., a match; and mi, 

j=0 if otherwise,

The matrix M is symmetric by definition and gives the following 
output:
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From the equation 5, it results to the averaging of S1, S2 and S3 over 
the linking matrices. The final clustering S is created by assigning all the 
pairs of elements xi and xj to the same cluster if the corresponding mij 
exceeds a threshold.

As described in Ishwaran and Rao [18], the use of filtering 
(dimension reduction), model averaging and variable selection to 
approximate subsequent position in the filtering step that will indicate 
variables to retain probably Vstart to Vmid and variables to filter Vmid+1 
to Vmax will result in high dimensions yields of an ultra-fast Gibbs 
sampling procedure with each step of the Gibbs sampler requiring 
O(nmax) operations. Thus, computational effort for the filtering step 
is linear in both dimensions. The retained variables are then applied 
to the model implemented by Gibbs sampler, the variable score is 
calculated with regulation parameters. If applied on DNA sequences 
using Gibbs sampler the computational speed for discovering motif 
will be generally rapid as the number of variables at this point will be 
fraction of the original sequence size.

According to Maksims and Richard [19] Gibbs Sampling was used 
in the efficient sampling of bipartite problems defined as mapping one 
set of items to another which are present, with applications ranging 
from computational biology to information retrieval to computer 
vision; showed that when using standard Gibbs form to define the 
probability of a permutation π can be represented as:

1( / ) exp( E( / )) Z( ) exp( E( / )
( )

P
Z p

p q p q q p q
q

= - = = -å
where θ is the set of the model parameters and E (π, θ) is the sum of 

single and/or higher order potentials. The main reason for this is that 
the path from one probable assignment to another using only pairwise 
swap is likely to go through regions that have very low probability.

Zeeshan et al. [19] applied another layer of Gibbs sampling to the 
original algorithm in predictive pattern of patients where sequences 
are dynamically swapped in and out. Making use of the following 
techniques:

i. Combinatorial Technique: Searching a set of subsequence {m1,
m2,… mw} that occurs with similarity and fewer differences within a set 
of sequences {s1, s2,... sn}.

ii. Probabilistic: Searching for starting positions {p1, p2,… pn} within 
a given set of sequences {s1, s2,... sn} that leads to the best sequence using 
A x W profile matrix (where A is the number of different symbols in the 
data and W is the length of the motif.

From the techniques the goal is to replace poor matches with 
potentially better options as to arrive at a cluster of sequences that 
share conserved motif. Pointing out the challenges that are associated 
with motif detection in symbolic signals as both skewed distributions 
related to sparse of abnormal activity which increases number of trivial 
motifs, the running time of the motif discovery algorithm and motif 
degeneracy issues encountered in DNA sequences. This indicates 
that predictive patterns may be preserved and missing in some cases 
owing to factors like age, gender, clinical history, medications and 
lifestyle of patients as well as noise that obscures predictive pattern. 
Numerous computational methods involve estimating the probabilities 
of alternative discrete choices, often in order to pick the single most 
probable choice. The basic idea of Gibbs sampling as applicable in this 
situation simply means operating where there is at least two dimensions 
and rather than probabilistically picking the next state all at once. 
Therefore, it will make separate probabilistic choice for each of the k 
dimensions, where each choice depends on the other k-1 dimensions.

Owing to the fact that in Gibbs Sampling algorithm there more 
iteration levels during the sampling process of chain-like operation 
where each sequence is isolated continuously throughout the operation 
to obtain results. Higher iteration levels lead to higher runtime of 
operation. Therefore, this work modifies Gibbs sampling algorithm 
by using the whole sequence like a python list and perform a random 
selection for a start position using the length of the supplied motif as a 
guide. It will then loop through to check for matches and compute the 
probability ratio base on the distribution by predicting other starting 
sample positions and making use of lesser iterative levels of sampling 
process on DNA sequences. The overall rationale is to avoid longer 
iterative loops in other to obtain a better average runtime and equally 
arrive at an accurate motif result [20].

Methods

Gibbs Sampling Algorithm has been previously applied to motif 
discovery. This research adopted Markov Chain Monte Carlo (MCMC) 
approach to improve motif discovery for an improved runtime result 
that is obtained through lesser iterations in DNA sequences. The Gibbs 
Sampling Algorithm will choose the first sequence for sampling. This 
implies isolation of the first sequence and thus builds probabilistic 
database on the remaining sequences. In the process it also selects a 
probabilistic random motif position for each un-chosen sequence 
putting into consideration the length of the random chosen motif for 
an appropriate position. Hence, it counts residue occurrences for each 
position for all un-chosen sequences to build the table that tabulates 
column-wise the count of the residues as (1 to length of motif) and 
row-wise for the 4 possible DNA residue identities namely Adenine, 
Cytosine, Guanine and Thymine (A, C, G and T). Focusing on the un-
chosen sequences only and comparing them with the given motif it 
will lay more emphasis on the probabilistic random motifs aligned with 
same length, it checks and populates the values representing how many 
times A, C, G and T appears on each column.

From the un-chosen sequences, further emphasis is applied on the 
remaining codes excluding the probabilistic random motif, treating 
these codes all together as one sequence, it searches through for the 
frequencies of A, C, G and T and tabulate the values in column 0 of the 
table. Once the table is completely filled, summation of each column is 
used to get the probabilities of the occurrences of a residue in a given 
motif position. The probability can be obtained by dividing the value 
of each cell in a column by the total summation on same column. In 
a case of a cell value been zero where 0 divide by total summation 
equals 0 is not applicable, because zero probability results to an error in 
computation and that should not be allowed to happen, in this case that 
a cell value is zero does not imply getting zero probability. Therefore, 
the conventional division sign ‘/’ is not the expected division operation 
to be used, rather make use of the formula:

,
, 1

i j j
i j

C b
q

N B
+

=
- +

(7)

Where, qi, j=Probability of position i, j,

ci, j=Value in each cell,

bj=Pseudo count (Arbitrary number can be 0.5 or 1) for all ACGTs,

N=Total Sum on each column,

B=2 (If bj=0.5, then B=0.5 × 4 ACGT residues=2).

For the probabilistic given value 0 in the position,

While A1=c1, j=0,
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If bA=0.5,

Then, B=0.5 × 4, i.e., count (ACGT)=2 and N=4

Therefore,
1,

1,
0 0.5 [0.1]

1 4 1 2
A A

A

C b
P

N B
+ +

= = =
- + - +

 (8)

Using a value 0 in the formula returns 0.1 instead of zero in a 
normal division.

The total sum of each probability on each column will result to 1.0 
therefore each residue will signify the probability of occurrence it has 
on each length of the probabilistic random chosen motif from the un-
chosen sequences.

Accounting for the background frequency counts for each ACGT 
on a single column containing the un-chosen codes in the unselected 
sequences. The mathematical division is also not applicable, hence the 
formula:

0,
0,

0,1

j j
j j

ki

c b
q

c B
=

+
=

+å
             (9)

Where, c0, j is the value of counts in position 0, bj is the arbitrary 
value e.g., 0.5,

0,1

j
ki

c
=å  is the sum of all values in position 0,

B is value of bj multiply by number of residues ACGTs i.e., 0.5 × 
4=2.

After calculating the background frequency counts. From the 
sequence that was chosen for sampling, the isolated first sequence was 
chosen for sampling, the un-chosen sequences were used for building 
the probability table, then calculate weight for each possible motif 
position in the chosen sequence. With the chosen isolated sequence 
and the probability table, it applies an iterative process for the sequence.

The algorithm tries to calculate for the probability that the given 
length of motif is in the 1st, 2nd, 3rd or nth positions. It will multiply the 
probabilities for each of the positions given a motif position:

0, j
0, j

0,1

j
j

ki

C b
q

C B
=

+
=

+å
            (10)

where, A1 is the Adenine in 1st position, pn, N=Probability of 
Nucleotide in a position, n is the position number, while N is the 
Nucleotide Alphabet A, C, G or T. After getting the values for A1, A2, A3 
and An, it randomly chooses a motif position for the chosen sequence 
using the weights. This implies trying to normalize them by dividing 
each position 1 to n divided by the sum of the positions, using the 
formula:

1,A 2, 3, 4, 5,
1

0,A 0, 0, 0, 0,

* * * * *...
* * * * *...

C G T

C G T

P P P P P
A

P P P P P
=              (11)

Where, An=A1, A2, A3.

After normalizing, the values obtained as the probability of Adenine 
starting from first, second, third or nth positions will sum up to 1. It 
will further reveal the position with the highest probability value.

Finally, it will repeat until convergence; repeating whole process 
until all sequences has been chosen for sampling using the iteration 
value provided. It will continue repeating whole process until motif 
positions for all sequences do not change position anymore. When it 
obtains some kind of convergence, meaning the position obtained for 
the first, second, third and nth sequences stops moving, when they stop 
moving it can probably achieve the best position for the motif in each 
sequence.

To perform an improved sampling this iGibbs sampling method 
created a new comprehensive list that contains all the list of nucleotides 
available in the entire sequence of the file in use. The populated sequence 
list is applied in satisfying the sampling process which is relevant in 
predicting a start position of a hidden pattern in a sequence using the 
length of the motif as a better guide to the sampling operation as shown 
in Figure 1. Hence the length of the sequence in use is expected to be 
greater than the length of the motif therefore the length of motif must be 
lesser than the length of DNA sequence codes in use. Subsequently the 
use of random positioning to properly select a sequence position that 
starts from the first index 0 to the length of the first sequence, we also 
sampled for the next possible position by excluding the same sequence 
from the computation, this enabled the calculation for every possible 
position of the motif. A probability was observed to ascertain if the 
randomly selected start position from amongst all possible selections 
was a motif or background sequence.

The computed probability for a likely motif position was obtained 
applying the usual Gibbs Algorithm way of multiplying the probabilities 
for all available motifs starting point in all positions. The result of the 
probability obtained is then normalized to a standard value and used in 
sampling the new position. This modified algorithm applied the use of a 
burn inward looping method that converges to an appropriate sequence 
position; it therefore implies that the computation with the higher 
probability is best suited position for the motif within the sequence. 
This also indicated the fractions between the actual motif and the 
background sequences by counting the number of residues occurrence 
in the selected sequence and the background sequence. Using the brca 
DNA sequence provided for motif discovery the background count is 
computed as count of the entire residue occurrence from start point 
index 0 in the sequence excluding the position of the expected motif. 
Computed thus: (Increment of ZN where N is nucleotide residues)

Figure 1: System Design of i Gibbs.
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ZN+=1 in Seqz             (12)

Where Seqz is less than starting position [x] or Seqz greater than the 
position [x]+len(x).

Hence normalizing the background value is obtained thus: using 
ZN divided by ∑(ZN) (summation of all). Whereas for the motif position 
selected the computation is starting position [XN] in the sequence 
with respect to the length of the sequence motif [XM] where both [XN]
[XM]+=1 increment, the value is also normalized by dividing the count 
of [XN][XM] by the length of the sequence and motif:

(Seq) len(motif)
N M

XM
X X

Q
len

=
+

 (13)

Implementation

The iGibbs system was developed using python programming 
language which includes the Biopython and Python(x,y) packages. Qt 
Designer software was used for the interface design and subsequent 
direct modifications only during the course of implementation as 
shown in Figure 2. The output of the graphical user interface class was 
connected into Eclipse Integrated Development Environment (IDE) 
with the use of an embedded PyDev plug-in feature which enables 
the coding all features in the python development environment. 
The input of sequences can be achieved by loading from the file 
repository directory on the system or from on an online database 
using the accession number of the sequence file. Python operation 
always requires the path to a current working directory of any file in 
use. This system was designed to always return and update the path 
of a current file in use so as to enable the python smooth operation. 
DNA Sequences that are pasted into the editor will always need to be 
saved in fasta or gbk format to enable same operation. Analysis on the 
sequence can also be performed to acquire report and summary like 
total bases, mega bases, total amino acid composition and percentage, 
GC contents, all nucleotide counts, longest sequence and all codon 
usage and percentage, about the data content of the sequence file.

A timer was applied using the variables start=time.clock() and 
stop=time.clock() into the coding section of generate motif operation 
so as to enable it return the total time elapsed in generating the motif. 
The timer was computed from the difference of the start and end clocks 
in seconds. Similarly, a progress bar was used to visually indicate the 
completion of the generate motif operation from 0 to 100 incrementing 
at 0.01 level.

Step by Step pseudo code for our iGibbs algorithm is as follows:

Step 1: Load input file,

Step 2: Input Length of motif,

Step 3: Input Iteration Value x,

Step 4: Create a list of DNA Sequence N,

Step 5: Identify k-mer base on motif length,

Step 6: Sampling random position Ni,j,

Step 7: Loop and converge Pi,j,

Step 8: Compute selected and background,

Step 9: Acquire motif position in iteration x,

Step 10: Normalize count on PWM and score positions,

Step 11: Output Motif with highest score,

Step 12: End.

Results and Discussion
Once a brca DNA file is properly loaded the implementation is 

designed such that absolute path of that loaded file automatically 
displays along with the file content. As for a newly pasted sequence, 
it can be saved using the menu option on the interface or applying 
shortcut keys.

As shown in Figure 3 the settings of parameters for, motif length or 
known motif code and iteration value are all necessary before execution.

In Figure 4 the output of the motif result showing the positions 
for each motif’s starting point within the brca DNA sequence and 
selecting the best position from the iteration that has best score. It 
further displays the motif sequences and the time elapsed in generating 
the motif.

Using the codon table, in Figure 5 the motif result displays the 
DNA, mRNA and Protein conversion of the generated motif sequence, 
where the DNA is the most unstable motif sequence from the result, 
the mRNA changes all Thymine to Uracil and finally the mRNA 
conversion of AUGACUCUCUAA to protein AUG=Met representing 
Start, ACU=Thr and CUC=Leu. An asterisk sign * represents a stop 
codon UAA in the mRNA to protein conversion.

We made use of different parameters namely: total bases ranging 
from length 5,000, 10,000 to 15,000 brca DNA sequences; motif length 
of varying sizes 12, 18 and 24, and iteration levels 5 to 15 to achieve 
repeated results whose outputs each embedded with elapsed runtime 
we used to compute the average runtime performance of the algorithm 
as shown in Table 1.

For proper analysis of the result obtained from iGibbs algorithm, 
we made use of Gibbs motif sampler for brca DNA result online via the 
website ccmbweb.ccv.brown.edu/cgi-bin/gibbstorun using the same 
DNA files containing equal number of total bases with same length of 
motif and recorded the elapsed time for each run as shown in Table 1. 
The performance of iGibbs algorithm compared to the existing Gibbs 
sampling algorithm as shown in Table 1 indicated that the total number 
of bases analyzed were 5,000, 10,000 and 15,000 DNA sequences with 
several testing operations of the algorithms using the search parameter 
of motif length 12, 18 and 24 on each of the total bases. During the 
operation of iGibbs, the iteration level was adjusted using two ranges of 

Figure 2: Graphical User Interface design of iGibbs.
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5 to 10 and 10 to 15 across all total bases so as to achieve satisfactory run 
time results. An average runtime was recorded for both the iteration 
levels used across the three total bases for the iGibbs and existing Gibbs 
sampling algorithm and we obtained an improved runtime ranging 
from 3 to 26 seconds in the iGibbs as compared to the existing Gibbs 
which has an average runtime range of 12 to 60 seconds. The result 
obtained in Table 1 was further represented on a line graph in Figure for 
proper comparison and clear representation of the runtime operations 
between the iGibbs algorithm and the existing Gibbs algorithm.

Beside the runtime, the accuracies for both motif output were 
observed using the hamming distance as applied in Mostafa and Hazem 
[1] to calculate mismatches between the set of motif, a record of zero is 
made for a complete unique column and subsequently a count is made 
for mismatches found on each column. A total addition of all the value 
acquired as the mismatch is known as the hamming distance.

From the motif result obtained using iGibbs, we were able to check 
the accuracy by adopting an approximate match check measured by 
the use of hamming distance. The Hamming distance is the number 
of corresponding positions of different bits in the sequence. It simply 
shows that during the sampling and iteration process the selected motif 
sequences have minimum edit distance with minimum number of 
editing operations such as substitution, insertion, deletion needed to 
transform one or few nucleotides into the other consensus sequences. 
The iGibbs was able to achieve better time of operation and hamming 
distance to maintain accuracy of the results.

Further elucidating on the result using the brca1 DNA files as shown 
in Table 2 that was obtained from https://www.ncbi.nlm.nih.gov/
nuccore the following results were obtained using these parameters.

Total base of 5,225 nucleotides, motif size of 12 and iteration level 
of 5.

******************GENERATING MOTIF***************************

(448, 463, 457, 448, 145, 145, 145)1 (326, 341, 335, 326, 717, 331, 331)2

(645, 651, 657, 645, 327, 327, 327)3 (595, 720, 607, 595, 99, 99, 99)4

 (10, 19, 19, 10, 715, 715, 715)5

**********************************************************************

(‘Best Position =’, 1) This indicates the selected position from the 
iteration performed.

[‘CTAACATTTCTG’, ‘CTAGCATTTCTG’, ‘CTAACATTTCTG’, 
‘CTAACATTTCTG’,

‘CTGACATTCCTG’, ‘CTGACATTCCTR’, ‘CTGACATTCCTG’]

CTAACATTTCTG

CTAGCATTTCTG

CTAACATTTCTG

CTAACATTTCTG

CTGACATTCCTG

CTGACATTCCTR

CTGACATTCCTG

**********************************************************************

(‘Length of Generated Motif =’, 12) Timer: 3.08549297262 (Time 
elapsed in seconds for execution)

Figure 3: Integer Motif Input and Iteration.

Figure 4: Sample view of Motif Result.

Figure 5: Motif DNA, mRNA and Protein Result.

Figure 6: Motif logo 1 using http://weblogo.berkeley.edu/logo.cgi.
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From the result obtained above the hamming distance has a 
numerical value of 4 as shown in Table 3 and a web-logo was generated 
from the consensus sequence as shown in Figure 6.

With the use of same brca1 DNA files as shown in Table 2, the 
iGibbs operation with the following parameters: Total base of 5,225 
nucleotides, motif size of 18 and iteration level of 10 was performed 
and the following results were obtained.

***********************GENERATING MOTIF*****************************
(672, 684, 684, 672, 497, 497, 497)1 (175, 254, 184, 175, 712, 712, 712)2

(507, 522, 519, 507, 494, 494, 494)3    (416, 431, 425, 416, 83, 83, 83)4

(3, 12, 12, 3, 315, 315, 315)5          (515, 530, 527, 515, 714, 714, 714)6
(442, 457, 451, 442, 139, 139, 139)7 (333, 348, 342, 333, 316, 316, 316)8

(54, 63, 63, 54, 453, 453, 453)9          (243, 252, 252, 243, 710, 710, 710)10

************************************************************************

(‘Best Position =’, 4). This indicates the selected position from the 
iteration performed.

[‘AGATGGGTATCCAGATAC’, ‘AGATGGGCATCCAGATGT’, 
‘AGATGGGTATCCAGATAC’, ‘AGATGGGTATCCAGATAC’, 
‘AGATCTGAATACCGATCC’, ‘AGATCTGAATACCGATCC’, 
‘AGATCTGAATACCGATCC’]

AGATGGGTATCCAGATAC

AGATGGGCATCCAGATGT

AGATGGGTATCCAGATAC

AGATGGGTATCCAGATAC

AGATCTGAATACCGATCC

AGATCTGAATACCGATCC

AGATCTGAATACCGATCC

************************************************************************

(‘Length of Generated Motif =’, 18)  Timer: 4.18014217055 (Time 

elapsed in seconds for execution)

From the consensus sequence obtained in the result shown above, 
the hamming distance is a numerical value of 7 as shown in Table 4. 
A web-logo was generated from the consensus sequence is shown in 
Figure 7.

Hence, the use of brca1 DNA files as shown in Table 5 which was 
obtained from https://www.ncbi.nlm.nih.gov/nuccore. The following 
parameters used on iGibbs: Total base of 10,257 nucleotides, motif size 
of 12 and iteration level of 5 the following results were obtained:

***************************GENERATING MOTIF**************************

(23, 32, 32, 23, 247, 247, 247, 247, 247, 88, 24, 247, 247, 247)1

(2, 11, 11, 2, 314, 314, 314, 314, 314, 155, 298, 314, 314, 314)2

(491, 374, 503, 491, 95, 95, 95, 95, 489, 409, 29, 95, 95, 95)3

(453, 468, 462, 453, 624, 624, 624, 624, 624, 465, 416, 624, 624, 624)4

(2, 647, 11, 2, 314, 314, 314, 314, 314, 155, 298, 314, 314, 314)5

************************************************************************

(‘Best Position =’, 1) This indicates the selected position from the 
iteration performed.

[‘ATTTCTGAGAAG’, ‘ATTTCTGGGAAG’, ‘ATTTCTGAGAAG’, 
‘ATTTCTGAGAAG’, ‘TCTCCTGAGAAG’, ‘TCTCCTGAGAAG’, 
‘TCTCCTGAGAAG’, ‘TCTCCTGAGAAG’, ‘TCTCCTGAGAAG’, 
‘ACTCCTGAAAAG’, ‘ACCCCTGAAAAG’, ‘TCTCCTGAGAAG’, 
‘TCTCCTGAGAAG’, ‘TCTCCTGAGAAG’]

ATTTCTGAGAAG

ATTTCTGGGAAG 

ATTTCTGAGAAG

ATTTCTGAGAAG

TCTCCTGAGAAG

TCTCCTGAGAAG

Total Bases Length of Motif
iGibbs Algorithm The Gibbs Motif Sampler (for DNA) Online

Iterations Average Runtime (Seconds) Average Runtime (Seconds)
5,000 12, 18 and 24 5-10 3

12
5,000 12, 18 and 24 10-15 7

10,000 12, 18 and 24 5-10 9
32

10,000 12, 18 and 24 10-15 10
15,000 12, 18 and 24 5-10 15

60
15,000 12, 18 and 24 10-15 26

Table 1: Average runtime of Modified Gibbs Sampling Algorithm compared with Gibbs Motif Sampler Online.

S No brca1 DNA Sequences

1. >AY211956.1 Macropus rufus BRCA1 (BRCA1) gene

2. >AY211955.1 Didelphis virginiana BRCA1 (BRCA1) gene

3. >AY211954.1 Dendrolagus matschiei BRCA1 (BRCA1) gene

4. >AY211953.1 Macropus robustus BRCA1 (BRCA1) gene

5. >KX765637.1 Chodsigoa hypsibia isolate Chypsibi1 BRCA1 (BRCA1) gene

6. >KX765635.1 Chodsigoa parva isolate Chparva6 BRCA1 (BRCA1) gene

7. >KX765633.1 Chodsigoa parva isolate Chparva4 BRCA1 (BRCA1) gene

Table 2: 7 BRCA1 DNA sequences obtained from https://www.ncbi.nlm.nih.gov/nuccore.
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Figure 7: Motif logo 2 using http://weblogo.berkeley.edu/logo.cgi.

Figure 8: Motif logo 3 using http://weblogo.berkeley.edu/logo.cgi.

Figure 9: Chart showing runtime of operations.

TCTCCTGAGAAG

TCTCCTGAGAAG

TCTCCTGAGAAG

ACTCCTGAAAAG

ACCCCTGAAAAG

TCTCCTGAGAAG

TCTCCTGAGAAG

TCTCCTGAGAAG

************************************************************************

(‘Length of Generated Motif =’, 12) Timer: 10.0474499832 (Time 
elapsed in seconds for execution)

From the consensus sequence obtained in the result shown above, 
the hamming distance is a numerical value of 6 as shown in Table 6. A 
web-logo was also generated from the consensus sequence as shown 
in Figure 8.

Conclusion
This work has been able to contribute to knowledge by applying 

the use of an improved Gibbs sampling algorithm to successfully 
extract motifs in DNA sequences. In this work, emphasis was made 
on improving the operations in the iteration level which was used in 
the random sampling technique, we have been able to obtain results at 
better average runtimes range of 3 to 26 seconds using different base 
lengths of 5,000 to 15,000 brca DNA sequences and varying lengths 
of 12, 18 and 24 motifs, compared to the existing Gibbs motif sampler 
algorithm as shown in Figure 9.

The DNA data used in this study are obtained with the use of brcal 
or ascension number as search keywords. The DNA files are either 
in .fasta or .gbk formats and can either be sourced directly from the 
https://www.ncbi.nlm.nih.gov/nuccore or indirectly from the iGibbs 
application interface itself using the unique ascension number only. The 
data was further analyzed to check the general composition of amino 
acids, GC contents, individual and total nucleotides available in the 
loaded files that are essential for the motif discovery operation. Hence, 
about 14 different samples of DNA files were used during the iGibbs 
operation and each file comprises of varying lengths of nucleotides.

We were also able to maintain accuracy in the motif result obtained 
with match check by applying the hamming distance calculation. After 
running iGibbs using motif of length 12 on the 7 DNA files as shown 
in Table 2 which contains a total base of 5,225 nucleotides, the time 
elapsed for execution was 3.085 seconds. This operation provided five 
different starting positions for the consensus pattern in the sequence. 
From those positions it further made a selection of position (448, 
463, 457, 448, 145, 145, 145) 1 as the best consensus pattern with a 
generated motif logo in Figure 6. The DNA result obtained from the 
best consensus position was checked using the hamming distance 
computation between the motif and we obtained numerical value 
of 4. Using same DNA file in Table 2 with an increase in the motif 
length to 18 we obtained 10 different possible starting positions and 
the best position was (416, 431, 425, 416, 83, 83, 83)4 which has the best 
consensus pattern. The hamming distance was a numerical value of 7 
with generated motif logo in Figure 7.

With the use of motif length 12 on Table 5 which has 10,257 
nucleotides, we obtained five different possible starting positions and 
(453, 468, 462, 453, 624, 624, 624, 624, 624, 465, 416, 624, 624, 624) 
1 position has the best consensus pattern with a numerical value 6 
obtained in the hamming distance and motif logo as shown in Figure 
8. Therefore, the application of a iGibbs sampling algorithm using
python, biopython and python(x,y) in PyDev eclipse environment was 
vital in enhancing the performance of the algorithm and also rendered 
a quality graphical interface with simple usability. We recommend that 
the analysis can further be expanded to operate on protein sequences.
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C T A A C A T T T C T G
C T A G C A T T T C T G
C T A A C A T T T C T G
C T A A C A T T T C T G
C T G A C A T T C C T G
C T G A C A T T C C T R
C T G A C A T T C C T G
0 0 1 1 0 0 0 0 1 0 0 1

The hamming distance between the motif=4

Table 3: Hamming distance of consensus pattern of length 12 from Table 1.

A G A T G G G T A T C C A G A T A C

A G A T G G G C A T C C A G A T G T

A G A T G G G T A T C C A G A T A C

A G A T G G G T A T C C A G A T A C

A G A T C T G A A T A C C G A T C C

A G A T C T G A A T A C C G A T C C

A G A T C T G A A T A C C G A T C C

0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1

The hamming distance between the motif=7

Table 4: Hamming distance of consensus pattern of length 18 from Table 1.

S No BRCA1 Sequences
1. >AY211956.1 Macropus rufus BRCA1 (BRCA1) gene
2. >AY211955.1 Didelphis virginiana BRCA1 (BRCA1) gene
3. >AY211954.1 Dendrolagus matschiei BRCA1 (BRCA1) gene
4. >AY211953.1 Macropus robustus BRCA1 (BRCA1) gene
5. >KX765637.1 Chodsigoa hypsibia isolate Chypsibi1 BRCA1 (BRCA1) gene
6. >KX765635.1 Chodsigoa parva isolate Chparva6 BRCA1 (BRCA1) gene
7. >KX765633.1 Chodsigoa parva isolate Chparva4 BRCA1 (BRCA1) gene
8. >KX765631.1 Chodsigoa parva isolate Chparva1 BRCA1 (BRCA1) gene
9. >KX765630.1 Chodsigoa hypsibia isolate Chypsibi3 BRCA1 (BRCA1) gene

10. >DQ630209.1 Sorex minutus isolate 1 BRCA1 (BRCA1) gene
11. >KF758458.1 Sminthopsis crassicaudata BRCA1 (BRCA1) gene
12. >KX765618.1 Chodsigoa furva isolate Cfurva2 BRCA1 (BRCA1) gene
13. >KX765621.1 Chodsigoa hypsibia isolate Chypsibi5 BRCA1 (BRCA1) gene
14. >KX765614.1 Chodsigoa smithii isolate Chsmithii7 BRCA1 (BRCA1) gene

Table 5: 14 BRCA1 DNA sequences obtained from https://www.ncbi.nlm.nih.gov/nuccore.

A T T T C T G A G A A G
A T T T C T G G G A A G
A T T T C T G A G A A G
A T T T C T G A G A A G
T C T C C T G A G A A G
T C T C C T G A G A A G
T C T C C T G A G A A G
T C T C C T G A G A A G
T C T C C T G A G A A G
A C T C C T G A A A A G
A C C C C T G A A A A G
T C T C C T G A G A A G
T C T C C T G A G A A G
T C T C C T G A G A A G
1 1 1 1 0 0 0 1 1 0 0 0

The hamming distance between the motif=6

Table 6: Hamming distance of consensus pattern of length 12 from Table 5.
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