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Molybdenum Cofactor and Sulfite Oxidase Deficiency
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Abstract
A universal molybdenum-containing cofactor is necessary for the activity of all eukaryotic molybdoenzymes. In 

humans four such enzymes are known: Sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase and a mitochondrial 
amidoxime reducing component. Of these, sulfite oxidase is the most important and clinically relevant one. Mutations 
in the genes MOCS1, MOCS2 or GPHN - all encoding cofactor biosynthesis proteins - lead to molybdenum cofactor 
deficiency type A, B or C, respectively. All three types plus mutations in the SUOX gene responsible for isolated sulfite 
oxidase deficiency lead to progressive neurological disease which untreated in most cases leads to death in early 
childhood. Currently, only for type A of the cofactor deficiency an experimental treatment is available.

Introduction
Isolated sulfite oxidase deficiency (MIM#606887) is an autosomal 

recessive inherited disease caused by mutations in the sulfite oxidase 
(SUOX) gene [1]. Sulfite oxidase is localized in the mitochondrial 
intermembrane space, where it catalyzes the oxidation of sulfite to 
sulfate as a homodimer. Lack of this enzyme activity results in elevated 
sulfite levels, which subsequently cause severe neurological symptoms 
including untreatable seizures and progressive neurodegeneration. In 
the absence of effective treatment options, death typically occurs at an 
early stage although milder cases have been described.

More often a so called combined form of sulfite oxidase deficiency 
is found, which is caused by the absence of a molybdenum containing 
cofactor required for the activity of sulfite oxidase deficiency and 
additionally that of xanthine oxidoreductase, aldehyde oxidase and a 
mitochondrial amidoxime reducing component [2]. This combined 
form is also inherited autosomal recessively and caused by mutations 
in the genes MOCS1 (MIM#603707), MOCS2 (MIM#603708) or 
GPHN (MIM#603930). Clinically, this combined form of the disease is 
identical to the before described isolated form. However, the two forms 
can be distinguished biochemically by absence or presence of xanthine 
oxidoreductase activity. In the combined form, an increased level of 
xanthine and a reduced level of uric acid are found.

Apoenzymes of the Molybdenum Cofactor
Sulfite oxidase 

A common cofactor for oxidoreductases was postulated as early as 
in 1964 and a few years later sulfite oxidase was added to the short list of 
mammalian enzymes containing molybdenum besides xanthine oxidase 
and aldehyde oxidase [3,4]. Indeed, all eukaryotic molybdoenzymes 
contain the molybdenum in the form of a molybdenum cofactor 
(MoCo). This cofactor contains a universal prosthetic group called 
molybdopterin, which binds and coordinates the catalytically active 
molybdenum within the holoenzyme [5]. For humans, sulfite oxidase 
(SUOX) is the most important MoCo-dependant enzyme. So far, 25 
different mutations causing isolated SUOX deficiency have been 
described and are listed in Table 1. Recently, hyperekplexia has 
been described as an additional consequence of homozygous SUOX 
mutations [6].

Xanthine oxidoreductase

Classical xanthinuria (type I) is caused by mutations in the 
gene for xanthine oxidoreductase (XOR) and reflects an isolated 
XOR deficiency [7]. In MoCo deficiency, XOR deficiency is seen in 

combination with SUOX deficiency. Elevated xanthine and lowered 
uric acid concentrations in the urine are used to differentiate this 
combined form from the isolated SUOX deficiency. Rarely and only in 
cases of isolated XOR deficiency xanthine stones have been described 
as a cause of renal failure. Otherwise, isolated XOR deficiency often 
goes unnoticed. There is, however, a large body of evidence, that XOR 
has an additional and merely structural role during secretion of milk 
droplets in the lactating mammary gland [8-10].

Aldehyde oxidase 

The MoCo-dependent human aldehyde oxidase (AOX1) has a 
broad substrate specificity partially overlapping with that of other 
enzymes, e.g. the above listed XOR. A number of polymorphisms in the 
AOX1 gene are known, which influence the catalytic activity, but no 
case of isolated AOX1 deficiency has been described. A heterozygous 
de novo mutation has been reported in a schizophrenia patient, but 
since no functional analysis was done, this could be a non-pathogenic 
variant [11].

Mitochondrial amidoxime reducing component

In 2006 a fourth MoCo-dependent enzyme activity was described, 
which together with cytochrome b5 and its corresponding reductase 
catalyzes the reduction of N-hydroxylated compounds such as 
amidoximes at the outer mitochondrial membrane [12]. Apparently, 
all mammals express two isoforms encoded by the genes MARC1 and 
MARC2, which are also referred to as MOSC1 and MOSC2 [13,14]. 
Functional polymorphisms have been described for MARC2, but none 
of the two genes has been held responsible for a specific disease to date.

Molybdenum Cofactor Biosynthesis Genes
MOCS1

The MOCS1 gene was the first human gene identified in the 
conserved pathway (Figure 1) leading from GTP to active MoCo [15]. 
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Figure 1: Biosynthesis of the molybdenum cofactor. Involved proteins are depicted on the left and the corresponding inherited diseases on the right.
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Two consecutive open reading frames (ORF) A and B are found on 
the full length cDNA, which correspond to different genes in bacteria 
and plants [2]. ORF A is expressed via this full length cDNA leading to 
the protein MOCS1A, which carries a double glycin at the C-terminus 
essential for its catalytic function. Alternative splicing-involving exon 
9 of a total of 10 exons-omits this motif and the corresponding stop 
codon. This leads to a fusion protein MOCS1AB, which consists of a 
nearly complete A domain and an additional B domain encoded by 
the second ORF. Both MOCS1A and MOCS1AB are necessary for the 
formation of cyclic pyranopterin monophosphate (cPMP) formerly 
described as precursor Z, which is the first and a relatively stable 
intermediate of the MoCo pathway [16]. 

Approximately two thirds of all MoCo-deficient patients are 
homozygous or compound heterozygous for mutations in the MOCS1 
gene. In Table 2 all mutations described as responsible for MoCo 
deficiency are summarized. The two mutations in the compound 
heterozygotes are always located in the same domain, which indirectly 
demonstrates intragenic complementation if different domains are 
affected [2]. Complementation can also be seen during cocultivation of 
fibroblasts derived from different patients [17]. Cells unable to further 
process cPMP accumulate and excrete this intermediate, which is 
taken up and transformed to active MoCo by other cells which have 
their block in the first step leading to cPMP. Accordingly, the patients 
originally were divided into type A with MOCS1 mutations and type 
B with mutations in any of the other MoCo biosynthesis genes. In a 
patient combining all criteria for MoCo deficiency with a pronounced 
neonatal hyperekplexia only one mutation in the MOCS1 gene was 
identified despite extensive sequence analysis of all genes in question 
[18]. Since the heterozygous parents of affected patients are known to 
be devoid of any disease typical symptoms, it can be speculated that 
here a second pathogenic mutation was located either deep in an intron 
(leading to the activation of a cryptic splice site) or in a promoter or 
regulator sequence adjunct to the gene.

MOCS2

Nearly all of the remaining cases, i.e., approximately one third of 
the patients, carry homozygous or compound heterozygous mutations 
in the MOCS2 gene [2]. MOCS2 also encodes two different proteins, 
but the corresponding ORFs overlap in exon 3 of a total of 7 exons with 
the downstream ORF being shifted by one nucleotide with regard to 
the upstream ORF. Here, alternative first exons (named exon 1a and 
exon 1b) fuse to exon 2 of the MOCS2 gene and thus lead to the two 
proteins MOCS2A and MOCS2B. 

MOCS2A is the small subunit and MOCS2B the large subunit of 
the heterodimeric molybdopterin synthase, which in turn dimerizes 
to form a heterotetramer [19]. As MOCS1A, MOCS2 A carries a 
conserved double glycin at its C-terminus. Molybdopterin synthase 
introduces two sulfhydryl groups into cPMP, which finally will hold the 
catalytic metal ion in place. Due to these sulfur groups, molybdopterin 
as well as active MoCo are extremely unstable when exposed to oxygen 
[20]. Recently, molybdopterin synthase has been shown to take part in 
the regulation of RNA activated protein kinase (PKR) which in turn 
regulates apoptosis [21,22]. 

MOCS3

The small subunit of molybdopterin synthase (MOCS2A) must be 
sulfurated by MOCS3, the gene product of the intronless MOCS3 gene. 
No disease-causing mutation responsible for MoCo deficiency or any 
other disease has been described within this gene (HGMD, 2016). With 
regard to MoCo biosynthesis one should clearly expect the phenotype 

Nucleotide change Predicted effect Reference
c.182T>C p.L61P [48]
c.287dupC Frame shift [1]
c.520delG Frame shift [49]
c.571delC Frame shift [50]

c.571_574delCAGC Frame shift [1]
c.623C>A p.A208D [51]
c.650G>A p.R217Q [52]

c.734_737delTTTC Frame shift [1]
c.772A>C p.I258L [1]
c.794C>A p.A265D [52]
c.803G>A p.R268Q [1]

c.1084G>A p.G362S [1]
c.1097G>A p.R366H [1]
c.1109C>A p.S370Y [51]
c.1126C>T p.R376C [1]
c.1136A>G p.K379R [1]
c.1187A>G p.Q396R [1]
c.1200C>G p.Y400X [1]

c.1234_1235delGT Frame shift [53]
c.1261C>T p.Q421X [1]

c.1313_1316delTAGA Frame shift [54]
c.1348T>C p.W450R [1]
c.1355G>A p.G452D [55]

c.1521_1524delTTGT Frame shift [1]
c.1589G>A p.G530D [52]

Table 1: Mutations in the SUOX gene responsible for isolated sulfite oxidase 
deficiency as known in August 2016.

of a MoCo deficiency type B as the activity of molybdopterin synthase 
strictly depends on MOCS3 activity [23]. Since MOCS3 activity is also 
involved in tRNA thiolation and thereby in global processes like nuclear 
transport, cytokinesis and cell cycle progression one might, however, 
also speculate on a possible embryonal lethality as a consequence of 
hitherto not described MOCS3 mutations [24].

GPHN

The protein gephyrin was originally described for its function in 
glycine receptor clustering [25]. Sequence homologies to bacterial, 
insect and plant genes suggested an additional role in the insertion 
of molybdenum into the cofactor [26,27]. This was confirmed by the 
phenotype of gephyrin-deficient knockout mice, which also suggested 
gephyrin mutations to be responsible for hyperekplexia [28]. In a MoCo-
deficient patient with hyperreflexia a homozygous frame shift mutation 
in the GPHN gene was identified, which abolished protein translation 
after exon1 of a total of 27 exons [29]. This mutation abolishes the 
N-terminal “G domain” as well as the C-terminal “E domain” (being 
named after their homologous bacterial gene). In fibroblast cultures 
derived from this patient, MoCo synthesis and activity could be restored 
by high concentrations of inorganic molybdate. Although this type C 
of MoCo deficiency appears to be curable by these means, transgenic 
mice carrying the plant homologue Cnx1 on a gephyrin-deficient 
background despite restored MoCo activity showed unchanged early 
lethality due to the absence of receptor clustering [30]. One MoCo-
deficient patient with a homozygous point mutation in the E domain 
of gephyrin was also described [31]. In contrast to the above case, 
fibroblasts from the latter patient could not be restored by inorganic 
molybdate. The still active G domain here adenylates molybdopterin, 
while an inactive E domain prohibits deadenylation and blocks non-
enzymatic molybdenum insertion. Consequently, patients with 
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isolated E domain mutations should be grouped in yet another type D 
of MoCo deficiency.

Various alternative splicing involves several facultative exon 
“cassettes” and leads to at least 11 different GPHN transcripts, which 
are believed to be more or less tissue-specific [32]. Further work 
along this line suggests that these isoforms reflect different gephyrin 
populations either involved in MoCo biosynthesis or fulfilling 
structural tasks in synapse receptor clustering [33]. In the brain of 
epilepsy patients without genomic GPHN mutations irregular splicing 
of GPHN RNA has been observed, which impairs G domain-dependent 
oligomerization and has a dominant-negative effect by interacting 
with normally spliced gephyrin [34]. Since the same isoforms could 
be “environmentally” induced in cell cultures by cellular stress such 
as alkalosis, it is believed that seizure activity could be responsible 
for this observation. Interestingly, heterozygous gross deletions held 
responsible for autism, schizophrenia and seizures show a common 
overlap in the same region [35].

MOCOS

Before its incorporation into XOR or AOX1, but not into SUOX, 
the MoCo has to be sulfurated by an enzyme called MoCo Sulfurase 
(MOCOS alias MCSU) [7]. Mutations in the corresponding gene 
MOCOS abolish XOR and AOX1 activity resulting in xanthinuria 
type II, which can be distinguished from type I by presence or absence 
of the ability to convert allopurinol to oxipurinol [36]. Hitherto, five 
xanthinuria patients with MOCOS mutations have been described 
[7,37]. Due to a reduced expression level of MOCOS in olfactory stem 
cells of patients with autism spectrum disorders (ASD), the gene was 
also brought in context with neurodevelopment and neurotransmission [38].

Animal Models and Experimental Therapies
Murine disease models have been created by targeted gene 

disruption for Gphn and Mocs1 deficiency [28,29]. Homozygous 
Gephyrin-deficient mice do not survive their first day of life and the 
comparison with Mocs1/mice illustrates that this is caused by the loss of 
receptor clustering rather than the disturbance of MoCo biosynthesis.

Mocs1-deficient mice die within 14 days after birth and since they 
reflect the biochemical situation in most of the patients they have 
repeatedly been used for therapeutical studies.

The feasibility of a biochemical substitution therapy for MoCo 
deficiency type A using cPMP was demonstrated in these mice and 
later successfully transferred to human patients [39,40]. 

AAV-mediated gene therapy of these animals also proved to 
be very successful in that a single injection of recombinant virus 
rescued the phenotype for years [41,42]. By now, a large body of 
evidence has accumulated that AAV applications can increase the 
risk for hepatocellular carcinoma (HCC), but also that this risk can be 
minimized by modulating several parameters such as vector dose or 
enhancer/promoter selection [43]. 

Gene Nucleotide change Predicted effect Reference
MOCS1 c.99_100delGG Frameshift [2]
MOCS1 c.195_212del18 p.G66_Y71del [56]
MOCS1 c.199C>T p.R67W [57]
MOCS1 c.217C>T p.R73W [56]
MOCS1 c.218G>A p.R73Q [2]
MOCS1 c.238T>G p.C80G [57]
MOCS1 c.250T>C p.C84R [2]
MOCS1 c.251G>T p.C84F [57]
MOCS1 c.253C>T p.Q85X [2]
MOCS1 c.256T>G p.Y86D [2]
MOCS1 c.269_270delAG Frameshift [58]
MOCS1 c.291delC Frameshift [59]
MOCS1 c.367C>T p.R123W [59]
MOCS1 c.377G>A p.G126D [56]
MOCS1 c.379G>A p.G127R [56]
MOCS1 c.394C>T p.R132W [2]
MOCS1 c.418+1G>A Skipping exon 2 [56]
MOCS1 c.583+1G>A Skipping exon 3 [57]
MOCS1 c.603_623del21 p.G202_E208del [2]
MOCS1 c.664C>T p.R222X [2]
MOCS1 c.666_667insCGA R222_G223insR [57]
MOCS1 c.721delC Frameshift [2]
MOCS1 c.722delT Frameshift [15]
MOCS1 c.956G>A p.R319Q [56]
MOCS1 c.970G>A p.G324R [59]
MOCS1 c.971G>A p.G324E [56]
MOCS1 c.1000insT Frameshift [2]
MOCS1 c.1015_1018del4 Frameshift [57]
MOCS1 c.1027C>T p.R343X [57]
MOCS1 c.1064T>C p.I355T [18]
MOCS1 c.1102+1G>A Skipping exon 8 [56]
MOCS1 c.1150G>A p.G384S [56]
MOCS1 c.1165+6T>C Skipping exon 9 [60]
MOCS1 c.1313_1314insG Frameshift [56]
MOCS1 c.1502_1507del6insCT Frameshift [2]
MOCS1 c.1523_1524del2 Frameshift [15]
MOCS1 c.1640delA Frameshift [2]
MOCS1 c.1777G>A p.G588R [57]
MOCS1 c.1798A>C p.T595P [56]
MOCS1 c.1826T>C p.L604P [2]
MOCS1 c.1838_1843del6insCC Frameshift [2]
MOCS2 c.-9_14del23 Initiation failure [61]
MOCS2 c.1A>G Initiation failure [2]
MOCS2 c.3G>A Initiation failure [62]
MOCS2 c.16C>T p.Q6X [63]
MOCS2 c.19G>T p.V7F [63]
MOCS2 c.33T>G p.Y11X [57]
MOCS2 c.45T>A p.S15R [59]
MOCS2 c.88C>T p.Q30X [59]
MOCS2 c.106C>T p.Q36X [59]
MOCS2 c.130C>T p.R44X [64]
MOCS2 c.220C>T p.Q74X [2]
MOCS2 c.252_253insC Frameshift [62]
MOCS2 c.413G>A p.G76R [59]
MOCS2 c.501delA Frameshift [2]
MOCS2 c.533_536del4 Frameshift [62]
MOCS2 c.564G>C p.G126A [59]
MOCS2 c.564+1G>A Skipping exon 5 [2]
MOCS2 c.635_637del3 p.A150del [59]
MOCS2 c.658_664del7insG p.L158_K159del [59]

MOCS2 c.689G>A p.E168K [62]
MOCS2 c.714_718del5 Frameshift [59]
MOCS2 c.726_727delAA Frameshift [62]
MOCS2 c.754A>C Termination failure [57]
GPHN c.65-?_102+?del Frameshift [29]
GPHN c.1838A>C p.D613A [31]

Table 2: Mutations causative for combined MoCo deficiency in the genes MOCS1, 
MOCS2 and GPHN as known in August 2016.



Citation:  Reiss J (2016) Molybdenum Cofactor and Sulfite Oxidase Deficiency. Metabolomics (Los Angel) 6: 184. doi: 10.4172/2153-0769.1000184

Page 5 of 6

Volume 6 • Issue 3 • 1000184
Metabolomics (Los Angel), an open access journal
ISSN: 2153-0769 

Recently, a murine model for MoCo deficiency type B was 
described, which essentially reflects the phenotype of type A deficient 
mice, but apparently has a slightly accelerated mortality [44]. Since 
type B patients do not prosper from cPMP substitution and subsequent 
metabolites such as molybdopterin or MoCo itself are highly instable, 
the gene therapy approach described above could be reemployed and 
explored further using these animals.

Clinical Studies
The first intravenous cPMP substitution of a type A MoCo-

deficient patient with MOCS1 mutations convincingly showed a 
normalization of all biochemical parameters [45]. Although a reversal 
of already apparent neurological damage could not be expected, 
further neurodegeneration was stopped. In a subsequent study cPMP 
treatment of a type A patient was started 4 h after birth, which resulted 
in a complete suppression and even reversal of symptoms typical for 
MoCo deficiency [46]. A prospective cohort study with a total of 16 
patients confirmed that cPMP substitution is most effective in type A 
patients if started before onset of symptoms, but is ineffective in type B 
patients with pathogenic MOCS2 mutations [47]. 

Conclusion
Isolated SUOX deficiency and the three known types of combined 

MoCo deficiency all result in seizures refractory to common treatment 
regimen and elevated sulfite levels in the urine. Therefore, urinary 
sulfite measurement by dipstick analysis is strongly recommended in 
all unsolved cases of neonatal persistent seizures. Additionally, lowered 
uric acid is an indicator for the combined MoCo deficiency and a test 
of this parameter is often included in routine metabolic screening. 
Additionally, it might be worthwhile to think about the inclusion of 
the above described genes in genetic screens-especially in the light 
of ever cheaper whole genome analysis. This would also result in an 
accelerated pinpointing of the exact type of the disease, which to date is 
the critical factor in the decision for treatment options.
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