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Abstract
Intraductal papillary neoplasm of the pancreas (IPMN) is a frequently found, pancreatic cystic neoplasm. IPMN has relatively high malignant 
potential, and its therapeutic strategy is limited to surgical resection. It is well known that mutations of GNAS and KRAS play important roles in 
its malignant progression, but its molecular mechanisms have not been well elucidated. In this review, clinical features and molecular alterations 
of IPMN were summarized. Then, crosstalk between KRAS signaling and phosphatidylinositol 3-kinase (PI3K) signaling was clarified. Finally, it 
was indicated that the final effector of KRAS mutant IPMN could be carbon anhydrase IX (CA9), and the possibility of molecular targeted therapy 
against IPMN by means of CA9 inhibitors was discussed.
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Introduction

Intraductal papillary neoplasm of the pancreas (IPMN) [1-3] is a frequently 
found, pancreatic cystic neoplasm [4-6]. IPMN has relatively high malignant 
potential [7]. Thus its malignant progression causes serious problems in 
clinical practice [3,8]. At the overt malignant stage, invasive IPMN shows poor 
prognosis comparable to that of pancreatic ductal adenocarcinoma (PDAC) 
[9]. It is well known that mutations of GNAS and KRAS play important roles 
in its malignant progression [10-12], but its molecular mechanisms have not 
been well elucidated. In addition, there is no effective cytotoxic chemotherapy 
nor molecular targeted therapy [11]. Instead, surgical resection of pancreatic 
lesions is only the current recommended treatment strategy [1-3,13,14], and 
the effect of adjuvant chemotherapy after surgical operation is quite limited 
[15,16] or questioned [11,17]. 

In this regard, a recent indication of a novel therapy against KRAS mutant 
IPMN by means of inhibitors of carbon anhydrase IX (CA9) [18] is worth 
noting. In this review, we summarize clinical features of IPMN and molecular 
alterations, in particular GNAS and KRAS mutations. Then, we clarify crosstalk 
between KRAS signaling and phosphatidylinositol 3-kinase (PI3K) signaling 
via direct binding of KRAS to PI3K and via hypoxia inducible factor (HIF). 
Finally, we indicate that one of the final effector of KRAS mutant IPMN can 
be CA9 and discuss the possible molecular targeted therapy against IPMN by 
CA9 inhibitors.

Discussion

Clinical features of IPMN

IPMN is classified into three clinical types, i.e., branch duct IPMN (BD-

IPMN), main duct IPMN (MD-IPMN), and mixed type IPMN [1,2]. Prognosis 
of BD-IPMN is better than that of MD-IPMN or mixed type IPMN [2,9,19]. 
Histological classification of IPMN [2] is grouped into gastric type with low-
grade dysplasia (LGD), intestinal type with high-grade dysplasia (HGD), and 
pancreatobiliary type with HGD [3,11]. The rare oncocytic type was also known 
[3], but this is now reclassified into intraductal oncocytic papillary neoplasm 
[12]. Invasive cancer associated with IPMN shows tubular type or colloid type 
[3,11]. Thus the histological malignant progression of IPMN is summarized as 
from LGD (gastric type) through HGD (intestinal or pancreatobiliary types) to 
invasive IPMN (tubular or colloid types) as in Table 1.

Molecular alterations of IPMN

There are several gene mutations of IPMN [10-12,20-23]. Among them, 
mutations of KRAS [24,25] and GNAS [26,27] are thought to play crucial roles 
in oncogenesis of IPMN [11,12]. More than 90% of IPMN harbor KRAS and/
or GNAS mutations [20]. KRAS mutation is detected in up to 80% of IPMN 
[10,11,21] and GNAS mutations is found in around 70% of IPMN [10,21], while 
coexistence of both KRAS and GNAS mutations is observed in more than 30% 
of IPMN cases [11,12,20].

KRAS mutation (G12D and G12V are frequent mutation sites) [28-30] 
activates downstream effectors including RAF, mitogen-activated protein 
kinase kinase (MEK), and extra-cellular signal-regulated kinase (ERK) [31] in 
Figure 1. The KRAS/RAF/MEK/ERK signaling further activates transcription of 
various target genes [32-34] and translation of HIF mRNA [35-38]. KRAS also 
activates PI3K by direct binding [39-41]. Crosstalk between KRAS signaling 
and PI3K signaling will be later discussed.

GNAS encodes G-protein stimulatory α subunit (Gsα), GNAS has hotspots 
of activating mutation H201H, H201C and Q227L [11,42], and mutant GNAS 
disrupts GTPase activity via structural change in the GTPase domain of Gsα, 
leading to constitutive activation of downstream signaling pathways [42] such 
as cAMP and cAMP-dependent protein kinase A (PKA) [42-44]. This cAMP-
PKA signaling is involved in oncogenesis of many cancer [45] in Figure 1. In 
IPMN and PDAC, suppression of tumor suppressor salt inducible kinase (SIK) 
by GNAS signaling is supposed to be critical to oncogenesis [43]. In addition, 

*Address for Correspondence: Mitsuru Sakitani, Director of the Institute CCC, 
Kobe, Hyogo, Japan, E-mail: msakitani_iccc@icloud.com

Copyright: © 2023 Sakitani M. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Received: 01 March, 2023; Manuscript No. jmgm-23-92176; Editor Assigned:  03
March, 2023; PreQC No. P-92176; Reviewed: 17 March, 2023; QC No. Q-92176; 
Revised: 23 March, 2023, Manuscript No. R-92176; Published:  31 March, 2023, DOI: 
10.37421/1747-0862.2023.17.602

Table 1. Malignant progression and histological types of IPMN.

Grade Frequent histological types
Low-grade dysplasia Gastric type
High-grade dysplasia Intestinal or pancreatobiliary types

Invasive cancer associated with IPMN Tiubular or colloid types
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mutations of RNF4 (25-75%), TP53 (18-20%), SMAD4 (<5%), KLF5 (15%) 
and CDKN2A (0-15%) are found in HGD of IPMN [10]. Their roles in malignant 
progression have been under intensive investigation [11,28,43,46-48].

Crosstalk between KRAS/MEK/ERK and PI3K/AKT/mTOR 
signaling via PI3K

The KRAS/MEK/ERK signaling has crosstalk with the PI3K/AKT/
mechanistic target of rapamycin (mTOR) signaling pathway (Figure 1 and 
Table 2). This crosstalk has been overlooked but has critical importance in 
elucidating oncogenesis of IPMN and developing novel molecular targeted 
therapies against IPMN.

First, crosstalk between KRAS and PI3K is induced by direct binding of 
KRA to PI3K [39-41]. PI3Kα has RAS-binding domain of p110α [49-51]. After 
activated by binding of KRAS with G12D or G12V mutations, the KRAS-PI3K 
complex further activates its downstream effectors AKT (protein kinase B) and 
mTOR complex 1 (mTORC1) [40,41].

Crosstalk between KRAS/MEK/ERK and PI3K/AKT/mTOR 
signaling via HIF

Second, crosstalk between the KRAS/MEK/ERK and the PI3K/AKT/mTOR 
signaling is due to the common activation pathway via translation activation of 
HIF-1α mRNA [18,35-38]. Activated mTORC1 stimulates phosphorylation of 
4E-binding proteins (4E-BP1), which induces its release from eIF4E, leading to 
association of eIF4E with eIF4G. This then induces assembly and activation of 
the mRNA-cap binding eIF4F complex (eIF4E, eIF4G and eIF4A) [52-54]. The 
activated eIF4F complex stimulates translation of mRNA of HIF-1α. In addition, 
mTORC1 activates ribosomal S6 kinases (S6Ks). 

The relevant substrates of S6Ks in translation regulation are ribosomal 
protein S6 (rpS6), eIF4B, eukaryotic elongation factor 2 kinase (eEF2K) 
and programmed cell death 4 protein (PDCD4) [54], which finally stimulate 
translation of mRNA of HIF-1α. Activated ERK1 or ERK2 phosphorylates 
4E-BP1, S6K, and MAP kinase interacting kinase (MNK) [36,55]. MNK also 
phosphorylates eIF-4E. ERK also increases HIF-1α activity by phosphorylation 
of coactivator CBP/p300 [55]. Taken together, crosstalk between the KRAS/

MEK/ERK and the PI3K/AKT/mTOR signaling is mediated by HIF-1α signaling 
via activation of its translation.

CA9 the final effector

The final effector of the mutant KRAS is supposed to be CA9. First, HIF-1α 
is commonly stimulated by both the KRAS/MEK/ERK and PI3K/AKT/mTOR 
signaling pathways. Then, CA9 is activated by HIF-1α via hypoxia response 
element (HRE) in its promoter region with recruitment of CBP/p300 [56-58]. 
Thus, the final effector of the KRAS mutant IPMN is suspected to be CA9. In 
fact,CA9 has multiple functions to promote oncogenesis in many cancers by  
cell proliferation via correction of intracellular pHi and extracellular pHe [59,60], 
cell survival via apoptosis inhibition [61,62], promotion of metastasis via cell 
migration and invasion [63-65], therapy resistance via phenotypic plasticity 
[66-68], and tumor expansion via tumorigenicity [69].

Second, molecular targeted therapies against KRAS mutant PDAC by 
means of inhibitors against effectors in the KRAS/MEK/ERK signaling pathway 
are ineffective [70,71], but inhibitors of CA9 effectively prevent cell growth 
of KRAS mutant PDAC cell lines [31,72,73]. These results indicate not only 
effectivity of CA9 inhibitors against KRAS mutant PDAC but also the possibility 
of novel therapies against KRAS mutant IPMN by means of CA9 inhibitors.

Conclusion

The mutations of GNAS and KRAS are critical to oncogenesis of IPMN. 
In the GNAS signaling, SIK is suspected to play an essential role, but its 
mechanisms should be further clarified. On the contrary, in the KRAS signaling, 
both the KRAS/ERK/HIF/CA9 axis and the PI3K/mTORC1/HIF/CA9 axis 
commonly activate the final effector CA9, and CA9 inhibitors are suspected to 
be effective against KRAS mutant PDAC. As a logical consequence, in KRAS 
mutant IPMN, CA9 can be involved in oncogenesis, and CA9 inhibitors against 
KRAS mutant IPMN are expected to be a possible therapeutic strategy. Further 
investigation will be required.
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