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Abstract

Many viruses trigger innate and adaptive immune responses and must circumvent the negative consequences to
successfully establish infection in their hosts. Human Cytomegalovirus (HCMV) is no exception, and devotes a
significant portion of its coding capacity to genes involved in immune evasion. Activation of the NFκB signalling
pathway by viral binding and entry results in induction of antiviral and pro-inflammatory genes that have significant
negative effects on HCMV infection. However, NFκB signalling stimulates transcription from the Major Immediate
Early Promoter (MIEP) and pro-inflammatory signalling is crucial for cellular differentiation and viral reactivation from
latency. Accordingly, HCMV encodes proteins that act to both stimulate and inhibit the NFκB signalling pathway. In
this Review we will highlight the complex interactions between HCMV and NFκB, discussing the known agonists and
antagonists encoded by the virus and suggest why manipulation of the pathway may be critical for both lytic and
latent infections.
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Viruses and the NFκB Signalling Pathway
The innate immune response to virus infection results in activation

of the NFκB transcription factors, which regulate a vast array of
antiviral and pro-inflammatory effector functions. Viruses often trigger
the NFκB signalling pathway either through activation of Pattern
Recognition Receptors (PRRs) or in response to membrane fusion
events. In order to successfully establish an infection viruses encode
genes to subvert or utilize this ubiquitous signalling pathway to their
own advantage [1]. Some viruses, such as Human Immunodeficiency
Virus (HIV) and Herpes Simplex Virus (HSV) utilize NFκB signalling
to stimulate viral gene expression [2,3]. Oncogenic gamma-
herpesviruses like Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)
and Epstein Barr Virus (EBV) encode proteins that activate NFκB
signalling in order to utilize pro-survival signals during latency [4,5].
More commonly, viruses inhibit the NFκB signalling pathway using a
diverse array of strategies [1,6]. Many RNA and DNA viruses target the
PRRs and their adaptors either via downregulation or blocking their
activities [7-10]. Others target downstream components of the
signalling pathway [11-14] or the NFκB subunits themselves [15-18].
While strategies for manipulation of the NFκB signalling pathway
using viral proteins are diverse, new approaches, most recently using
viral non-coding RNAs [19-23], are regularly being discovered.

NFκB signalling is a paradigm for the principles of signal
transduction and transcriptional activation. Transcriptional regulation
is mediated by the NFκB subunits (the transcriptional activators p65/
RelA, RelB and c-Rel and the DNA binding proteins p105/p50 and
p100/p52), which are abundant, potent, broadly expressed and
modulate numerous important cellular functions allowing the cell to
respond and adapt to environmental changes. Activation of the NFκB
subunits requires phosphorylation- induced ubiquitination and
proteasomal degradation of the inhibitor of NFκB proteins (most
commonly IκBα, IκBβ and IκBε) that retain the NFκB subunits in the

cytosol. For example, phosphorylation on the Ser32 and Ser36 residues
results in degradation of IκBα via the 26S proteasome and releases the
NFκB subunits to transit to the nucleus, homo- and heterodimerize
and bind specific κB binding sites in the promoters of regulated genes.
Canonical NFκB signalling is initiated by ligand binding to upstream
cell surface receptors (including IL1β, TNFα and TLR receptors),
which transduce these extracellular signals via activation of both
kinases and ubiquitin ligases. Multiple upstream signalling pathways
converge at the IκB kinase (IKK) complex composed of the catalytic
subunits IKKα and IKKβ and the structural component IKKγ (or
NEMO). Linear ubiquitination of NEMO assembles the IKK complex
and activation is the result of phosphorylation of IKKα or IKKβ on
serine residues in their activation loops either by upstream kinases or
through trans-autophosphorylation. The activated IKK complex plays
a critical role by phosphorylating the IκBs and thus activation of this
complex is a highly regulated step in the NFκB signalling cascade [24].
In contrast, the non-canonical NFκB signalling pathway is induced by
lymphotoxin B, B Cell Activating Factor (BAFF) or CD40 ligand and
results in phosphorylation of IKKα dimers by the NFκB Inducing
Kinase (NIK). Stimulation of the non-canonical NFκB signalling
pathway results in the release of RelB and p52 heterodimers [25].
Termination of the NFκB response is complex and occurs in part
through a negative feedback loop resulting in NFκB-dependent
expression of the IκB proteins. Newly synthesized IκB relocalizes the
NFκB subunits from the DNA to the cytosol thus resulting in a self-
limiting inflammatory response.

Human Cytomegalovirus Modulation of the NFκB
Signalling Pathway

Herpesviruses have co-evolved with their hosts over millions of
years in order to succeed in establishing a life-long infection in the face
of constant immune surveillance. In order to persist for the lifetime of
the host, herpesviruses have evolved myriad strategies to utilize and
evade the host innate and adaptive immune responses. Human
cytomegalovirus (HCMV/HHV-5) is a member of the beta-
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herpesvirus family with high prevalence in the human population; in
the United States 50-90% of adults are seropositive and seropositivity is
closer to 100% in developing countries [26]. While HCMV infection is
generally subclinical in healthy individuals, serious disease can arise
when the host immune system is compromised and viral reactivation
occurs. HCMV replicates in numerous cell types including
macrophages, dendritic cells, fibroblasts, epithelial and endothelial
cells as well as smooth muscle cells, neuronal cells, hepatocytes and
trophoblasts. In these cell types, HCMV undergoes a lytic replication
cycle involving viral binding and entry of the capsid into the cytoplasm
releasing tegument proteins that act to immediately disarm intrinsic
cellular immune responses. After injection of the viral DNA into the
nucleus, cellular transcriptional trans activators act to stimulate
transcription from the Major Immediate Early Promoter (MIEP),
which results in the transcription of multiple Immediate Early (IE)
genes including the major isoforms IE protein 72 (IE72/IE1) and IE86/
IE2. Expression of IE1 and IE2 is critical for the efficient launch of the
lytic replication cycle [27,28]. The MIEP enhancer region is highly
complex, containing an array of positive and negative cis-acting
elements including binding sites for numerous cellular transcription
factors such as CREB/ATF, AP-1, Elk-1, SRF and NFκB [29]. These
Cis-acting elements work both cooperatively and independently to
initiate RNA polymerase II transcription from the MIEP thus ensuring
activation of the promoter by a variety of cellular signalling pathways
regardless of the differentiation and activation state of the cell. IE
proteins help to stimulate expression of Early (E) phase proteins, many
of which are involved in DNA replication. E proteins also help to
stimulate Late (L) gene expression, whose products are involved in
virion assembly and release. HCMV replicates poorly in less
differentiated cell types such as CD14+ monocytes and CD34+
Hematopoietic Progenitor Cells (HPCs). In these cells most viral genes
are not expressed and the viral genome is maintained in the absence of
progeny virus production. The limited viral proteins and non-coding
RNAs expressed during latency play important roles in suppressing
viral gene expression and regulating intracellular signalling pathways
[30]. To uncover how HCMV successfully evades host innate and
adaptive immunity in such a diverse array of cell types and during
fundamentally disparate lifecycles an understanding of the role of both
viral proteins and non-coding RNAs in manipulating cellular signal
transduction pathways is required.

The role of NFκB signalling in the HCMV lifecycle is exceedingly
complex and evidence suggests that the virus activates both canonical
and non-canonical signalling pathways. In turn, HCMV encodes both
agonists and antagonists of NFκB signalling in order to aid in viral
replication and dissemination, establishment of latency and
reactivation. Early work examining regulation of the MIEP identified
multiple 18 nucleotide repeats within the MIEP enhancer region
containing consensus NFκB binding sites [31-33]. It was postulated
that induction of the NFκB signalling pathway at early times after
infection could enhance expression from the MIEP and thus help
initiate the lytic cascade of gene expression [32,34,35]. It was shown
that TNFα, a potent inducer of the NFκB signalling pathway, enhances
expression from the MIEP via increased binding of p50 and p65 to the
18 nucleotide repeat [36]. In fact, later work demonstrated that
activation of the NFκB signalling cascade is initiated by viral binding
[35,37] mediated by gB and gH interacting with their cognate
receptors in human fibroblasts [38,39] and monocytes [40] at least in
part via interactions with TLR2 [41,42]. The signalling initiated by viral
binding results in depletion of preformed cytosolic stores of p50 and
p65. Subsequently, de novo synthesis of p50 and p65 occurs through a

positive feedback signalling [34] and transactivation by IE proteins
[37] involving regulation of the SP1 transcription factor [43]. In
addition, Casein Kinase II (CKII) packaged in the virion has been
proposed to rapidly phosphorylate IkBα following viral entry, allowing
for an additional means of releasing the NFκB subunits which may be
necessary for infection of diverse cell types [44]. Interestingly, studies
of NFκB activation in primary Monocyte-Derived Macrophages
(MDMs) determined that although canonical p50/p65 heterodimers
are present at the MIEP very early after viral infection [40,45],
complexes composed of p52 and Bcl-3 are found at the MIEP at 5 days
post-infection, suggesting context dependent changes in NFκB
signalling in different cellular environments [45]. Similar stimuli are
known to activate distinct NFκB complexes in cell-type dependent
manners [46,47], but how and why the non-canonical NFκB signalling
pathway is activated in MDMs remains unclear. p52/Bcl-3
heterodimers are not as efficient at stimulating expression from MIEP
reporter constructs [45]; therefore one possibility is that non-canonical
NFκB signalling may act to limit MIEP expression in MDMs.

This early work clearly indicated that viral binding and entry
induces activation of NFκB signalling and results in expression from
the MIEP. However, the MIEP contains numerous binding sites for
additional cellular transcriptional activators and repressors and thus
the relative importance of NFκB in the overall stimulation of the MIEP
and ultimately virus replication was unclear. Additionally, activation of
NFκB signalling results in induction of numerous cellular genes,
including cell adhesion molecules, complement and acute phase
proteins as well as pro-inflammatory cytokines and chemokines which
can have antiviral effects on HCMV replication. Thus, the contribution
of the NFκB signalling pathway to full viral replication has been
studied extensively in vitro - with conflicting results. Growth curves of
AD169 and Toledo HCMV strains in human fibroblasts overexpressing
a Dominant Negative (DN) mutant of IκBα, suggested that blocking
NFκB signalling in fibroblasts was neutral to viral replication [48].
Additionally, when an NFκB site-mutated HCMV MIEP replaces its
MCMV counterpart in the MCMV genome the resulting virus
replicates with Wild Type (WT) kinetics in fibroblasts [48]. In contrast,
using pharmacological inhibition of the NFκB pathway, as well as the
IκBα DN mutant, it was suggested that blocking NFκB signalling
resulted in a modest increase in AD169 replication, and prevented
exogenous TNFα and IFNγ from negatively affecting virus replication
[49]. In addition, this study utilized a constitutively active mutant of
IKKβ and showed that constitutive activation of canonical NFκB
signalling inhibited viral replication through the production of IFNβ.
In order to directly test the requirement of NFκB signalling in
regulation of the MIEP during viral infection, Gustems et al. [50]
constructed an HCMV AD169 mutant containing point mutations in
all 4 NFκB binding sites within the MIEP and showed no deleterious
effects on IE expression or viral replication in human fibroblasts. This
work indicated that in the context of lytic AD169 infection of
fibroblasts, transactivation of the MIEP can be accomplished through
the additional transcription factor binding sites found within the
enhancer region [29]. In fact, our work and that of others (unpublished
observations, [51,52]) suggest that AD169 does not trigger or
modulate the NFκB signalling pathway in the same manner as clinical
strains of HCMV and may account for the relative resistance of AD169
replication to inhibition of the NFκB signalling pathway.

In contrast to the studies described above, work by several groups
[53-59], using both AD169 and clinical strains of HCMV and various
NFκB inhibitors as well as DN IκBα, IKKα and IKKβ constructs
demonstrate that IE and subsequent gene expression as well as viral
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yields are reduced when NFκB signalling is blocked in fibroblasts and
endothelial cells. Intriguingly, expression of the IκBα DN protein had
the greatest deleterious effect on MIEP transactivation compared to
DN IKKα and IKKβ constructs [59]. These observations suggest that
there are multiple signalling pathways activated by HCMV infection
that converge at the phosphorylation of IκBα, some of which do not
include activation of the IKK complex, such as direct phosphorylation
of IκBα by tegument-associated CKII [44]. These studies also indicated
that IKKα plays a more important role in MIEP transaction than IKKβ
[59] and hints at the involvement of the non-canonical NFκB
signalling pathway in fibroblasts as has been observed in MDMs [45].
Interestingly, when the later phase of NFκB signalling that occurs as a
result of IE1 transactivation of the p50 and p65 promoters [37] was
blocked by addition of pharmacological inhibitors, viral replication
was still impaired [58], suggesting an essential role for sustained NFκB
signalling during HCMV infection. The apparently contradictory
observations about the importance of NFκB signalling during viral
infection could be at least partially resolved by studies which examined
the role of NFκB signalling in replicating and growth arrested cells
[55]. Using DN IKKβ constructs and viruses lacking the NFκB target
sequences within the MIEP the authors demonstrate that virus
replication is only restricted in growth arrested, and not proliferating
fibroblasts and endothelial cells. These data suggest that the
differentiation and activation state of the infected cell plays a
significant role in NFκB-mediated MIEP transactivation and lytic
replication. Further experimentation to address the contradictory
requirement of NFκB signalling to the HCMV lifecycle is required to
resolve this essential question. Finally, the role of NFκB signalling in
regulating gene expression at other stages of the HCMV lifecycle has
not been thoroughly investigated. US3 contains NFκB binding sites
[60,61] that may contribute to the requirement of NFκB at later times
in the infection cycle and additional κB binding sites exist within the
HCMV genome [55].

Whether NFκB signalling and transactivation of the MIEP is
essential to virus replication both in vitro and in vivo remains an
ongoing question, but microarray data indicates that expression of
NFκB-inducible genes is more robust when viral gene expression is
inhibited [62], suggesting that some viral gene products act to dampen
the NFκB response. It was first reported that different lab-adapted and
clinical strains of HCMV could block signalling through the canonical
NFκB pathway initiated by IL1β or TNFα at or above the point of
convergence of the NFκB signalling pathways [63,64]. IκBα
phosphorylation and degradation was abrogated and expression of
several pro- inflammatory cytokines was prevented in infected
fibroblasts and endothelial cells treated with IL1β or TNFα after 72 h
of infection [63,64]. Similarly, phosphorylation and degradation of
IκBα was not detected at 5 days post-infection in MDMs [45]. In fact,
IκBα transcript [40] and protein levels [45] are increased during
infection of MDMs, suggesting that canonical NFκB signalling is also
actively blocked in this cell type at later times of infection [65]. The
antagonism of NFκB signalling requires expression of both early [64]
and late gene products [63,64]. Interestingly, when infected cells are
treated with IL1β a near-complete block in IkBα degradation is
observed, while treatment of infected cells with TNFα resulted in
residual IkBα phosphorylation and degradation, suggesting that
HCMV antagonism of the NFκB signalling pathway is dependent upon
which upstream signalling pathway triggers IκBα phosphorylation
[63]. Using AD169 mutants the ability to block TNFα-mediated NFκB
signalling could be genetically separated from blocking IL1β-mediated
signalling [64]. To date, the viral gene product(s) necessary for this late

block in NFκB signalling have not been identified, but several gene
products have been implicated in interfering with the NFκB signalling
pathway.

HCMV-Encoded Antagonists of the NFκB Signalling
Pathways

Viral proteins involved in blocking NFκB signalling
Figure 1 Illustrates the HCMV proteins and non-coding RNAs that

interfere with the NFκB signalling pathway.

Figure 1: HCMV-encoded antagonists of the NFκB signalling
pathway. NFκB signalling can be induced by activation of a variety
of cell surface receptors as well as HCMV binding and entry.
Upstream signalling cascades culminate at the activation of the IKK
complex. Several HCMV proteins and miRNAs (shown in red)
block activation of the IKK complex or downstream binding of the
NFκB transcription factors to their cognate sequences.

The tegument protein pp65 was the first HCMV protein shown to
interfere with NFκB signalling [66]. Using DNA arrays, it was
demonstrated that pp65-deficient viruses induced anti-viral and pro-
inflammatory genes to a greater extent than WT virus and exogenous
expression of pp65 could block type I IFN signalling. pp65-deficient
viruses induce NFκB subunit binding to a greater extent than WT, but
have no effect on IRF3 binding, suggesting that pp65 interferes
specifically with the NFκB signalling pathway.

The immediate early protein IE86 also blocks NFκB signalling in
infected cells [67-69]. IE86 attenuates the production of IFNβ during
HCMV infection either by preventing NFκB subunit binding to the
IFN promoter [68] or by blocking interactions between the subunits
and other transcriptional activators [70]. In addition, expression of
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IE86 blocks NFκB-dependent gene expression in response to external
stimuli, such as Sendai virus and TNFα treatment indicating that IE86
alone is sufficient to block NFκB signalling [67]. These studies
examined the effects of IE86 in isolation or at early times post-
infection, well before the late block to NFκB signalling observed in
studies by Jarvis et al. [63] and Montag et al. [64]. Thus HCMV likely
encodes multiple gene products from different kinetic classes that
block NFκB signalling. It remains an intriguing question as to why
HCMV encodes an inhibitor of canonical NFκB signalling that is
expressed with IE kinetics when the MIEP is transactivated by NFκB
subunit binding. Perhaps this is a mechanism of negative feedback
utilized by the virus to prevent over-activation of NFκB signalling and
pro-inflammatory cytokine production, given the functional
redundancy of transcription factor binding to the MIEP.

HCMV cmv-IL-10 (UL111a) is a functional homolog of cellular
IL-10, itself a potent inhibitor of pro-inflammatory responses. Like
cellular IL-10, recombinant cmv-IL-10 treatment of THP-1 cells can
block NFκB signalling at or above the level of IκBα degradation,
although the exact mechanism for the inhibition has not been further
elucidated [71].

The tegument protein UL26 has most recently been demonstrated to
possess NFκB inhibiting functions [52]. Expression of UL26 can block
TNFα and Sendai-virus-induced IKK activation, IκBα degradation and
IL6 production, suggesting that it functions at or above the point of
convergence of multiple NFκB signalling pathways and may contribute
to the late block in NFκB signalling observed in HCMV-infected cells
[63,64]. An UL26-mutant virus induces canonical NFκB signalling
with similar kinetics to WT infection, suggesting tegument-associated
UL26 does not block early induction of the pathway. Interestingly, the
UL26 mutant virus induces higher expression of the RelB NFκB
subunit, especially at later time of infection, suggesting that UL26 may
play a role in suppressing non-canonical NFκB signalling.

HCMV Non-coding RNAs Involved in Blocking NFκB
Signalling

Along with viral proteins, HCMV also expresses non-coding RNAs
that interfere with different aspects of NFκB signalling. MicroRNAs
(miRNAs) are small, ~22 nucleotide RNAs that act to post-
transcriptionally regulate gene expression. miRNAs normally interact
with short regions of complementarity in the 3’ UTR of targeted
transcripts which results in recruitment of cellular protein complexes
that ultimately lead to translations repression and/or mRNA
degradation [72]. Thus, by targeting regions of complementarity in
genes involved in the NFκB signalling pathway, HCMV miRNAs could
participate in the late block to NFκB signalling observed in HCMV
infected cells [63,64]. In fact, most HCMV miRNAs are expressed with
early kinetics, accumulate throughout the course of lytic infection
[73,74] and are abundant at the late stages of infection. Additionally,
several HCMV miRNAs are expressed during latency in CD34+ HPCs
[75] and could act to modulate NFκB signalling when most viral
proteins are no longer expressed. HCMV miR-US5-1 and miR-
UL112-3p have recently been demonstrated to block NFκB signalling
induced by IL1β and TNFα at late times post-infection [20]. Both
miRNAs target IKKα and IKKβ, limit the phosphorylation and
degradation of IκBα and attenuate the downstream expression of the
pro-inflammatory cytokines RANTES, IL6 and TNFα in fibroblasts,
endothelial cells and THP-1 cells. Infection of cells with an HCMV
TB40/E mutant lacking expression of miR-US5-1 and miR-UL112-3p
results in higher levels of IKKα and IKKβ proteins compared to WT-

infected cells, allows for partial IκBα degradation following exogenous
IL1β or TNFα treatment and increased secretion of pro-inflammatory
cytokines compared to WT infected cells. By replacing the miRNA
sequences with shRNAs targeting IKKα and IKKβ, the expression and
secretion of pro- inflammatory cytokines could be reduced to WT
levels, indicating that the mutant phenotype was due to the loss of IKK
complex targeting [20]. In addition, miR-UL112- 3p also targets the
TLR2 receptor, thereby blocking TLR2-induced IRAK1 activation and
subsequent expression of pro-inflammatory cytokines [21]. Given that
TLR2 signalling results in activation of the IKK complex, it is likely
that at least some of the observed effects of miR-UL112-3p on pro-
inflammatory cytokine expression is also due to its effects on IKKα and
IKKβ expression [20]. miR-US5-1 and miR-UL112-3p also work in
concert with a third HCMV miRNA, miR-US5-2, to interfere with the
endocytic recycling compartment and severely attenuate the secretion
of pro-inflammatory cytokines [76]. Additionally, miR-UL112-3p may
target IL-32, an inducer of NFκB signalling [77]. Finally, HCMV miR-
UL148D targets RANTES [78] and ACVR1B of the activin signalling
axis which promotes increased IL6 secretion upon activin stimulation
[75]. These studies underscore how HCMV miRNAs can interfere with
NFκB signalling at numerous steps to limit the deleterious effects of
pro-inflammatory cytokine production.

HCMV-encoded agonists of NFκB signalling pathways
Paradoxically, while encoding numerous proteins and non-coding

RNAs that block NFκB signalling in fibroblasts, endothelial cells and
monocytes, HCMV also encodes several agonists of NFκB signalling. It
has long been postulated that certain NFκB- responsive genes and the
effects of activation of the NFκB signalling pathway could also be
beneficial to viral replication and spread, especially in vivo [79]. Pro-
inflammatory cytokines and chemokines recruit cells to the site of lytic
infection that can be used for dissemination and seeding new viral
infections [80]. Additionally, anti-apoptotic genes induced by NFκB
signalling may help to prolong the life of the cell for efficient virus
production [81]. Finally, an intriguing possibility is that HCMV
encodes proteins that help to enhance NFκB signalling specifically in
latently infected cells in order to augment transactivation of the MIEP
to promote reactivation of the virus from latency. Figure 2 highlights
the proteins that act to stimulate signalling through the NFκB pathway.

In contrast to the NFκB-inhibiting functions of IE2, IE1
transactivates numerous cellular and viral genes utilizing the NFκB
signalling pathway. Although many of its ascribed functions are due to
positive feedback on the MIEP, IE1 alone induces NFκB signalling in
several cell types [32]. IE1 transactivates the p65 promoter [37,38], IL6
promoter [82], TNFα promoter [83], and the IL8 promoter [84]
through the NFκB signalling pathway. Interestingly, it was determined
that IE1 selectively induces RelB/p50 subunits rather than the
canonical p65/p50 complexes in smooth muscle cells and fibroblasts
[85].

UL144 is a transmembrane protein with properties similar to the
TNF Receptor (TNFR) family that potently activates the NFκB
signalling pathway and expression of the chemokine CCL22 in a
TRAF6- and TRIM23-dependent manner [86,87]. In light of the ability
of IE86 to block NFκB subunit binding, Poole et al. [88] determined
that UL144- mediated activation of CCL22 was insensitive to IE86
expression during infection suggesting that the ability of IE86 to block
NFκB subunit binding is promoter- and context-dependent.
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Figure 2: HCMV-encoded agonists of the NFκB signaling pathway.
HCMV encodes three cell surface proteins (US28, UL138 and
UL144, shown in red) that can activate or enhance NFκB signaling.
In addition, HCMV UL76 and IE1 can activate NFκB signaling
through unknown mechanisms.

UL76, a putative endonuclease, induces the NFκB signalling
pathway through activation of ATM and the DNA damage response.
Activation of ATM ultimately results in the phosphorylation of NEMO
leading to p65 translocation to the IL8 promoter, increased IL8
expression and enhancement of HCMV replication [89]. IL8 is an
important chemokine for neutrophil attraction, which the authors
postulate may be important for viral replication and dissemination
[90,91].

US28 is a 7-transmembrane chemokine receptor that activates
multiple cellular signalling pathways in ligand-dependent and -
independent manners that is expressed during latency in CD34+
HPCs. US28 constitutively activates NFκB signalling utilizing Gq/11
protein-dependent pathways [92]. US28 has been postulated to play a
role inactivation of the MIEP through its NFκB signalling activity [93]
and activation of the NFκB signalling pathway by US28 has been
linked to increased COX2 expression and angiogenesis in endothelial
cells [94].

UL138 was described in two reports to enhance TNFR1 expression
on the cell surface [95,96]. UL138 physically interacts with TNFR1,
prolonging its half-life and signalling capacity [96]. Interestingly, in
comparing a UL138 mutant virus to AD169 strains lacking the ULb’
region, additional TNF-regulating factors were postulated [96]. It is
possible that during latent infection of CD34+ HPCs, UL138 acts to
enhance the TNF- responsiveness of infected cells. Given the
importance of TNF signalling to HCMV reactivation [65,97], and the
role of NFκB signalling in enhancing MIEP expression
[32,33,36,37,59], it is intriguing to postulate that the virus modulates
NFκB signalling to regulate reactivation from latency.

Perspectives
While HCMV has evolved to utilize the NFκB signalling pathway to

launch its lytic replication cycle it has also had to evolve to control the
antiviral responses thus induced. Evidence suggests that NFκB
signalling that is tightly controlled by the virus at early times post-
infection is beneficial to viral replication. However, the virus has
evolved mechanisms to block any strong NFκB signalling induced by
extrinsic signals that could be detrimental to viral replication
[20,52,63,64]. Moreover, HCMV modulates both canonical and non-
canonical NFκB signalling. At early times activation of the canonical
pathway predominates [37,38], but evidence of both activation
[45,85,87] and suppression [52] of the non-canonical signalling
pathway at later times post-infection has also been demonstrated.
Activation of the non-canonical NFκB pathways by exogenous stimuli
results in IFNβ production [98] suggesting extrinsic activation of non-
canonical signalling, like extrinsic activation of canonical signalling
[20,52,63,64] can be detrimental to virus replication. The intricate
modulation of these different arms of the NFκB pathways may allow
HCMV to enhance the pro-viral effects, while limiting the antiviral
effects of NFκB signalling.

On the surface, the apparently contradictory roles of NFκB
signalling during HCMV infection are confusing, but likely underlie
the complexity of the HCMV replication cycle in the host. During lytic
infection, NFκB signalling is used to enhance MIEP expression and
viral replication, prolong the life of the infected cell while aiding in
viral dissemination by recruiting additional cell types to the site of
infection. During HCMV infection of monocytes, NFκB signalling
helps to initiate a differentiation program resulting in a unique
macrophage phenotype [99,100]. Additionally, NFκB-mediated up-
regulation of ICAM-1 and ICAM-3 is essential for monocyte motility
and firm adhesion to endothelial cells [101], a function key to the
ability of monocytes to disseminate and seed new viral infections.
Interestingly, HCMV-infected MDMs do not basally express high levels
of NFκB-dependent cytokines, but can potentiate cytokine expression
induced by lipopolysaccharide [102], suggesting that infected MDMs
are poised to reactivate virus upon pro-inflammatory cytokine
expression. Allogeneic T cell stimulation produces high levels of IL-6,
TNFα and IFNγ and results in HCMV reactivation in monocytes from
the peripheral blood [97]. Neutralization of TNFα or IFNγ prevents
HCMV reactivation, suggesting that a highly inflammatory
environment is critical for viral reactivation [65]. Thus, the virus must
maintain a careful balancing act to manipulate the outcomes of NFκB
activation for its own benefit depending on the cell type infected.

The role of NFκB signalling in latent HCMV infection of CD34+
cells has not been investigated. Whether viral binding and entry
stimulates NFκB signalling in CD34+ HPCs as it does in other cell
types is an intriguing question. NFκB signalling pathway components
are transcriptionally up regulated in HPCs protected from FAS-
mediated apoptosis [103], suggesting that HCMV-induced NFκB
signalling may help protect and prolong the life of infected HPCs
[104]. Non-canonical NFκB signalling, which is induced by HCMV
infection [45,85,87], has been implicated in CD34+ HPC
differentiation towards the myeloid lineage [105]. In addition, TNFα-
mediated activation of NFκB signalling in HPCs prevents
erythropoiesis [106,107], which is markedly suppressed during HCMV
infection of HPCs [108]. NFκB signalling is also critical for CD34+ -
derived myeloid DC differentiation and function [109], which may
highlight a critical link between NFκB signalling, myeloid
differentiation and viral reactivation. UL138 and US28, two viral gene
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products essential for latency in CD34+ HPCs [110,111], stimulate the
NFκB signalling pathway and thus may play a role in both
transactivation of the MIEP and cellular differentiation in order to
promote reactivation. HCMV miRNAs are also expressed during
latency, and at least some HCMV miRNAs act to block NFκB
signalling [20,21]. One possibility is that viral proteins help to poise the
latently infected cell for reactivation, but viral miRNAs act as fine-
tuners of the NFκB response, blocking any low-level signals that would
result in sub-optimal differentiation and viral reactivation. The
mechanistic details of how HCMV limits the antiviral effects while
enhancing the pro-viral facets of NFκB signalling remain a mystery.
What is clear is that both viral proteins and non-coding RNAs
participate in altering the intracellular signalling pathways in HCMV-
infected cells in order to successfully establish life-long infections in
vivo.
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