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Abstract
Wound dressing has remained challenging for some life-threatening wounds such as burning. Researchers have 

been engaged in looking for better solutions. This review paper depicted the ideal wound dressing based on the 
mechanism of human skins, compared traditional wound dressing methods to modern methods, and reviewed the use 
of polymers and biopolymers as advanced materials for wound dressing.
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Introduction of Skin and Would Healing Mechanism 
Skin is the human body’s largest organ. It is made up of three main 

layers – the epidermis, the dermis, and the hypodermis (subcutaneous 
layer) (Figure 1). The basal layer of epidermis is attached to a basement 
membrane, which overlies the dermis with lots of collagen fibers. 
Skin contains Extracellular Matrix (ECM) comprising both fibrillar 
collagen and basement membrane [1]. Functionally, skin effectively 
prevents passage of many foreign substances into the body by serving 
as a physical barrier as well as metabolizing large molecules. Moreover, 
skin regulates the body temperature and gives support to blood vessels 
and nerves [2]. Acting as the outermost layer and the first layer of 
protection to human body, skin is of essential importance to human 
health [3].

However, people get injured in skin very easily, which may lead to 
severe bleeding and sometimes fatal. The skin injury is wound. Wounds 
are described as defects in the skin due to mechanical/thermo damages 
and other accidents. Wounds are classified based on the number of 
skin layers damaged, the area of skin disrupted, cause of skin damage, 
and the nature of wound repair process. The repair process usually 
contains four steps: inflammation, migratory, new tissue formation, 
and tissue remodeling (Figure 2), which are closely related to restoring 
the structure and function of skin ECM. The inflammation phase is 
the most critical stage, protecting wounds from invading bacteria and 
assisting the tissue repair process [4]. The damage and restoration 
of skin ECM is involved with wound healing process. Most wound 
dressings target and facilitate the inflammation stage, and mimic the 
structure and functions of skin ECM [5].

Traditional Wound Dressings
Traditionally, people treat wounds through the usage of bandage 

or gauzes for small and light wounds. However, bandages or 
gauzes cannot fully cover hairy wound sites, thus giving bacteria an 
opportunity to enter the wound site, as well as allowing fluids and blood 
to leak out of the wound site. In addition, bandages and gauzes often 
require adhesives that are hard to clean from human skin. Moreover, 
bandages and gauzes are not big enough for large/deep wound sites 
with severe bleeding. Surgery and sutures are used to address large 
and deep wounds, but there are many problems and limitations such 
as expensive price, time-consuming and painful process, and the 
possibility of complications after surgery. To address these problems, 
modern medical technology employs colloids, hydrogels, fibers, and 
other biomedical adhesive materials as wound dressings.

Desired Properties for Wound Dressing Materials
Requirements for an ideal wound dressing are based on the 

properties of ECM of skin. The ECM consists of proteins and 
polysaccharides, provides mechanical and biochemical support to 
surrounding cells, and directs cell migration, adhesion and growth rate 
during tissue regeneration. Thus, ideal wound dressings should be able 
to mimic the skin ECMs structurally and functionally.

As a result, healing enhancement, pain control, and enhancement 
of skin structure reestablishment become the primary focus of 
advanced wound dressings [6]. Specifically, the ideal wound dressings 
are expected to prevent wound site dryness, be able to absorb wound 
fluids and exudates, prevent infections induced by microbes, stimulate 
the growth rate, enable oxygen passage, and be elastic, non-toxic, non-
antigenic, biocompatible and biodegradable [7-10].

Modern Wound Dressing Methods
Modern methods focus on the use of synthetic polymers and 

biopolymers, in the form of hydrogels [11], thin films [12], and Nano 
fibrous scaffolds [13].

Hydrogels resemble skin ECM, thus have the potential to direct cell 
activities. Moreover, hydrogels provide a moist healing environment 
for wound sites, which simultaneously aids in healing and helps to 
cool down the surface of skin, thereby reduce the degree of pain and 
improve patient acceptability. 

Researcher have been putting lots of effort adding drug contents 
in hydrogels to promote wound healing [14]. Gaharwar et al. [15] 
disclosed an injectable nanosilicates reinforced hydrogel from a 
polysaccharide, k-carrageenan, and produced would dressings with 
sustained drug release properties. Wang et al. [16] evaluated the 
biocompatibility and drug release behavior of a hydrogel consisting of 
chitosan, heparin and poly (γ-glutamic acid). It showed this hydrogel 
effectively promoted the repair of chronic trauma in diabetes. As a 
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good drug carrier, hydrogels as wound dressing material showed great 
potential promoting the healing effectiveness.

However, hydrogels are known to have low mechanical strength 
[17]. Lots of work has been done to improve the mechanical strength 
of hydrogels. Khorasani et al. [18] reported a novel nano hybrid 
interpenetrating network hydrogel composed of laponite, polyvinyl 
alcohol, and alginate, and demonstrated adjustable mechanical 
strength with superior potential for wound healing application. 
Different of nanoparticles have been used to improve the strength 
of the hydrogel, while some of the nanoparticles, such as silver [19], 
have antimicrobial properties in nature. However, the lack of porosity, 

oxygen permeability, and mechanical strength of hydrogels still limit 
their application as ideal wound dressings.

Three-dimensional (3D) electrospun nanofibrous scaffolds better 
mimic the skin ECMs due to their fiber alignment, large surface 
area, high porosity, and small pore size. Moreover, they have strong 
mechanical properties [20] which can better support cell activities. 3D 
electrospun nanofibrous scaffolds have also shown excellent oxygen 
passage, prevention of microbes’ invasion and water loss, and ability 
to absorb wound fluids. However, most studies on this application use 
a flat nanofibrous mesh, despite tissues are three-dimensional [21]. It 
is critical to employ a faster and realistic electrospun technique for 3D 
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Figure 1: A simple diagram of skin structure [3].

a. Inflammatory phase b. Migratory phase
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Figure 2: Wound healing process: (a) infiltration of neutrophils into the wound area (b) invasion of wound area by epithelial cells (c) epithelium completely covers 
the wound (d) many of the capillaries and fibroblasts, formed at early stages have all disappeared [5].
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scaffolds for wound dressings. On the other hand, many nanofibrous 
scaffolds only mimic the structure of ECM, without providing a moist 
environment for wound sites. 

Modern Wound Dressing Materials
Synthetic polymers such as polyvinyldene floride (PVDF) and 

polypropylene (PP) have been widely used for wound dressing 
materials. Poly (ε-caprolactone) (PCL), polyethylene glycol (PEG), 
polyethylene oxide (PEO), polyurethane (PU), poly (vinyl alcohol) 
(PVA), poly (lactic acid) (PLA), and poly (lactic-co-glycolic acid) 
(PLGA) are frequently used synthetic materials that have been approved 
by Food and Drug Administration (FDA) for biomedical applications, 
due to their good biocompatibility, biodegradability and non-toxic 
properties. For example, PLGA is commercially available, inexpensive, 
biocompatible, biodegradable, and showed sustained drug release 
properties [22], making it the ideal candidate for drug delivery and other 
biomedical applications. Moreover, Porporato [23] discovered that 
lactate played an important role in promoting angiogenesis and wound 
healing process, and concluded that PLGA to be the most suitable 
polymer to provide lactate for enhanced wound management. PEG 
displays excellent biocompatibility, biodegradability, hydrophilicity 
and wettability. It is inexpensive and readily available, and therefore 
widely used for biomedical applications. More recently, Kim [24] 
has shown that PEG provides anti-fouling properties, preventing the 
adsorption of protein and other biomolecules on to nanofiber surface, 
which enhances drug release properties and aids in maintenance of 
nanofiber surface properties during use. Hydrogels and nanofibrous 
scaffolds based on these synthetic polymers have been fabricated for 
biomedical applications with good mechanical properties. 

However, the application of these synthetic polymers alone as 
wound dressings are limited by their adhesive properties and their 
ability to accelerate wound healing process.

Therefore, it is critical to produce a new and improved wound 
dressing by synthesizing, modifying, and systematically designing 
wound dressing materials with good mechanical properties while 
accelerating the healing process at molecular, cellular and systematic 
levels. It is also desirable for wound dressings to have good drug release 
properties to further promote the wound healing process.

Polysaccharides in combination with these polymers provide a 
solution to the need for a new and improved wound dressing. This 
strategy combines the preferred chemical and biological properties of 
polysaccharides and synthetic polymers, producing wound dressings 
with superior performance both mechanically and biologically. The 
most studied polysaccharides for wound dressing applications include 
chitosan (CS) [6], gelatin [25], keratin [26], sodium alginate (NaAlg), 
agarose [6], and hyaluronic acid [27].

Among all these polysaccharides, Chitosan - Chitosan, produced 
by alkaline deacetylation of chitin, is the second most abundant 
natural polysaccharide and is composed of N-glucosamine and 
N-acetylglucosamine units [28]. Chitosan is inexpensive, readily 
available, and can be obtained from invertebrates’ skeleton as well as 
the cell wall of fungi. It is a biocompatible, biodegradable biopolymer 
with antibacterial and wound healing properties, as well as low toxicity. 
Due to these properties, chitosan has been widely studied to produce 
wound dressings combined with polymers such as CS/polyethylene 
glycol (PEG) [29], CS/poly (vinyl alcohol) (PVA) [30], CS/poly (lactic-
co-glycolic acid) (PLGA) [31] and CS/polylactide (PLA) [28]. 

However, because chitosan-based composite materials lack 

desirable adhesiveness, this along with their water-insoluble properties 
limits their potential for biomedical applications. Li [28] fabricated 
CS/PLA/PEG nanofibers for wound dressing using a solution 
blowing technique, and discovered quick absorption behavior, high 
water absorption rate, good air permeability, and good antibacterial 
activities against E. coli. Meng [31] employed electrospinning to 
produce PLGA/CS nanofibrous scaffold, and examined the drug 
release behavior of fenbufen (FBF) incorporated in the nanofibrous 
scaffold. The results showed that both the diameter of electrospun 
nanofibers and the drug release rate of FBF increased with increasing 
CS content. The researchers attributed the increased drug release rate 
to the enhancement of hydrophilicity of increased chitosan. Ryu [32] 
designed an injectable and thermoresponsive CS/Pluronic composite 
hydrogel, where catechol-conjugated chitosan was cross-linked with a 
Pluronic F-127 triblock copolymer to produce temperature-sensitive 
and adhesive sol-gel transition hydrogels. Catechol-conjugated 
chitosan greatly improved the adhesiveness of chitosan and thereby 
overcame this limitation of chitosan-based wound dressings. This 
modification imparted the CS/Pluronic hydrogel with stronger adhesive 
properties. The results showed dramatically enhanced adhesiveness to 
soft tissues and superior hemostatic properties. Moreover, the viscous 
solution state CS/Pluronic hydrogel solidified at body temperature and 
physiological pH, which makes these hydrogels a good candidate for 
injectable materials.

Future Needs for Would Dressings
Despite the various methods and materials for wound dressings, 

to date, no wound dressing fully satisfies the requirements of an 
ideal substitute for skin ECM. Most wound dressings are limited by 
fast degradation, weak adhesiveness and absorption, lack of drug 
release properties, poor oxygen permeability, as well as not being 
able to prevent protein adhesion onto the wound dressing surface. It 
is urgent to design and fabricate wound dressings which can address 
these problems simultaneously, thereby leading to improved wound 
management, creating an easy solution for wounds, and decreasing 
death rate induced by severe wounds and bleeding. 
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