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Introduction

Partial differential equations (PDEs) form the bedrock for modeling a vast array of
phenomena across scientific and engineering disciplines. These equations pre-
cisely describe how various physical quantities evolve over multiple independent
variables, proving indispensable for deciphering the intricacies of complex sys-
tems. Here’s the thing, a major thrust in this field revolves around developing
sophisticated numerical methods to effectively solve these equations, especially
for particularly challenging variants like fractional PDEs. Recent reviews provide
a comprehensive overview of numerical methods tailored for fractional partial dif-
ferential equations, detailing diverse approaches for discretizing both spatial and
fractional temporal derivatives. These discussions often include thorough analy-
ses of the stability and convergence properties inherent to these methods, offering
invaluable insights for researchers seeking efficient computational techniques to
tackle complex fractional models in a wide range of fields [1].

The integration of Artificial Intelligence (AI) and advanced machine learning tech-
niques has brought forth revolutionary new paradigms in how we approach and
solve PDEs. A prime example is Physics-Informed Neural Networks (PINNs), a
cutting-edge deep learning framework engineered to solve both forward and in-
verse problems governed by nonlinear partial differential equations. What PINNs
do is leverage neural networks to approximate solutions while simultaneously en-
forcing the underlying PDE constraints directly, making them a remarkably power-
ful tool for scientific machine learning and computational science, especially when
confronting complex physical systems [2]. Further expanding on this, deep learn-
ing has also proven highly effective in addressing inverse problems. These tech-
niques demonstrate how neural networks can efficiently infer unknown parame-
ters or initial conditions from observed data, thus providing powerful computational
tools essential for various scientific and engineering inverse modeling tasks that
require discerning hidden properties from observable outcomes [9].

Beyond the computational advancements, foundational theoretical work continues
to deepen our understanding of PDEs. Research meticulously explores the exis-
tence of weak solutions for stochastic partial differential equations (SPDEs) that
feature non-autonomous drift terms. This work significantly contributes to the fun-
damental theory of SPDEs, which are critical for accurately modeling systems influ-
enced by random forces, offering a robust framework for analyzing their behavior in
increasingly complex and time-dependent environments [3]. Another crucial theo-
retical domain focuses on free boundary problems for parabolic partial differential
equations. These problems are central to modeling phenomena where the solu-
tion’s domain is not fixed but must be determined as an intrinsic part of the solution
itself, with significant applications spanning from fluid dynamics and phase tran-
sitions to optimal control strategies [5]. Moreover, homogenization theory offers
profound insights by surveying methods for analyzing the macroscopic behavior

of materials characterized by rapidly oscillating microstructures. This theory ex-
plains how fine-scale heterogeneities profoundly influence bulk properties across
various scales, making it highly relevant for understanding composite materials
and porous media [7].

Addressing the significant computational hurdles posed by specific classes of
PDEs remains a paramount concern. For instance, review articles provide a
thorough survey of numerical methods specifically engineered to tackle high-
dimensional partial differential equations. They highlight various innovative tech-
niques designed to mitigate the notorious ”curse of dimensionality,” such as tensor
product approximations, sparse grid methods, and indeed, deep learning-based
approaches. These methods are absolutely essential for solving intricate prob-
lems in fields like quantum mechanics, finance, and control theory [4]. In a closely
related vein, the field of control theory for partial differential equations has seen
substantial recent progress. This area covers modern techniques vital for stabi-
lizing, optimizing, and driving PDE systems to achieve desired states. Such ad-
vancements are fundamental for a wide array of engineering applications, extend-
ing from aerospace and robotics to sophisticated chemical processes and energy
systems [6].

The field is also witnessing a surge in innovative data-driven approaches. One
notable advancement involves techniques for the data-driven discovery of partial
differential equations directly from observed data. These methods automate the
identification of the underlying governing equations of a physical system, present-
ing a compelling alternative to traditional, often laborious, model derivation and
significantly accelerating scientific discovery in complex, poorly understood phe-
nomena across diverse domains [10]. Complementing these analytical and compu-
tational methods, the study of geometric evolution equations within the specialized
framework of sub-Riemannian geometry offers unique perspectives. This research
explores how surfaces and curves evolve under intrinsic geometric flows within
these non-Euclidean spaces, thereby offering novel insights into problems found
in optimal control, robotics, and image processing, where such unique geometries
naturally manifest [8].

Description

The extensive body of work on Partial Differential Equations (PDEs) reveals a dy-
namic field that continually pushes the boundaries of theoretical understanding
and computational capability. A key area involves numerical methods, particu-
larly those developed for fractional partial differential equations. These methods
meticulously cover various approaches for discretizing both spatial and fractional
temporal derivatives, with a keen eye on their stability and convergence properties.
Researchers find these techniques crucial for developing efficient computational
solutions to complex fractional models across diverse scientific and engineering
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disciplines [1]. This groundwork is critical for practical applications.

The integration of deep learning stands out as a transformative development in
PDE research. Physics-Informed Neural Networks (PINNs) exemplify this shift,
offering a sophisticated deep learning framework designed to solve both forward
and inverse problems governed by nonlinear partial differential equations. PINNs
are adept at using neural networks to approximate solutions while simultaneously
enforcing the inherent PDE constraints, thus providing a potent tool for scientific
machine learning and computational science, especially when grappling with intri-
cate physical systems [2]. Further, deep learning techniques are being employed
to effectively solve inverse problems related to PDEs. They demonstrate how neu-
ral networks can efficiently infer unknown parameters or initial conditions solely
from observed data, supplying powerful computational tools for various scientific
and engineering inverse modeling tasks that previously were much harder to tackle
[9].

Addressing the computational challenges posed by high-dimensional systems is
another vital aspect. Review articles specifically survey numerical methods for
high-dimensional partial differential equations. They highlight various innovative
techniques that mitigate the ”curse of dimensionality,” such as tensor product ap-
proximations, sparse grid methods, and even deep learning-based approaches.
These methods are indispensable for solving complex problems found in quantum
mechanics, finance, and advanced control theory [4]. Parallel to this, advance-
ments in control theory for partial differential equations are significant, detailing
modern techniques for stabilizing, optimizing, and driving PDE systems towards
desired states. These are fundamental for a broad spectrum of engineering appli-
cations, from the precision of aerospace systems and robotics to the complexities
of chemical processes and energy management [6].

Theoretical explorations continue to fortify the understanding of PDEs. Research
investigates the existence of weak solutions for stochastic partial differential equa-
tions (SPDEs) that include non-autonomous drift terms. This work is fundamental
to the theoretical framework of SPDEs, which are essential for accurately modeling
systems influenced by random forces, thereby providing a robust structure for an-
alyzing their behavior in increasingly complex and time-dependent environments
[3]. In a similar vein, free boundary problems for parabolic partial differential equa-
tions are explored, which are crucial for modeling phenomena where the solution’s
domain is dynamic and must be determined as part of the solution. Applications
extend widely, encompassing fluid dynamics, phase transitions, and optimal con-
trol scenarios [5].

Furthermore, homogenization theory provides a crucial lens for understanding ma-
terials science by surveying methods to analyze the macroscopic behavior of ma-
terials with rapidly oscillating microstructures. This theory yields critical insights
into how fine-scale heterogeneities influence bulk properties across various scales,
proving highly relevant for fields dealing with composite materials and porous
media [7]. Rounding out the computational and theoretical advancements are
data-driven approaches for discovering partial differential equations from observed
data. These techniques automate the identification of governing equations for
physical systems, presenting a compelling alternative to traditional model deriva-
tion and accelerating scientific discovery in complex, poorly understood phenom-
ena across diverse domains [10]. Finally, the exploration of geometric evolution
equations within sub-Riemannian geometry expands perspectives by examining
how surfaces and curves evolve under intrinsic geometric flows in non-Euclidean
spaces, offering new approaches to problems in optimal control, robotics, and im-
age processing where such geometries are naturally encountered [8].

Conclusion

The collected research highlights the broad and evolving landscape of Partial Dif-
ferential Equations (PDEs), spanning theoretical advancements, numerical solu-
tions, and modern data-driven approaches. A significant focus is on advanced
numerical methods, including techniques for fractional PDEs, which address the
discretization of complex derivatives, and strategies for high-dimensional PDEs
that mitigate the curse of dimensionality through sparse grids and deep learning.
The integration of Artificial Intelligence (AI) is prominent, with Physics-Informed
Neural Networks (PINNs) emerging as a powerful framework for solving both for-
ward and inverse problems, and deep learning being leveraged to infer unknown
parameters from observed data.

Foundational theoretical work explores the existence of weak solutions for stochas-
tic PDEs with non-autonomous drift, crucial for modeling systems under random in-
fluences. Similarly, research on free boundary problems for parabolic PDEs delves
into scenarios where solution domains are intrinsically linked to the solution itself,
finding applications in fluid dynamics and optimal control. Control theory for PDEs
demonstrates progress in stabilizing and optimizing PDE systems for engineer-
ing applications. Furthermore, homogenization theory provides insights into the
macroscopic behavior of materials with microstructures, while data-driven meth-
ods offer an alternative for discovering governing equations from data. Geomet-
ric evolution equations in sub-Riemannian geometry offer new perspectives on
optimal control and robotics problems. Together, these studies underscore the dy-
namic interplay between theoretical understanding, computational innovation, and
practical application in the field of PDEs.
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