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Models solvable by Bethe Ansatz 1
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Abstract

Diagonalization of integrable spin chain Hamiltonians by the quantum inverse scattering
method gives rise to the connection with representation theory of different (quantum) alge-
bras. Extending the Schur-Weyl duality between sl2 and the symmetric group SN from the
case of the isotropic spin 1/2 chain (XXX-model) to a general spin chains related to the
Temperley-Lieb algebra TLN (q) one finds a new quantum algebra Uq(n) with the represen-
tation ring equivalent to the sl2 one.
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1 Introduction

The development of the quantum inverse scattering method (QISM) [1, 2, 3, 4] as an approach
to construction and solution of quantum integrable systems has lead to the foundations of the
theory of quantum groups [5, 6, 7, 8, 9].

The theory of representations of quantum groups is naturally connected to the spectral theory
of the integrals of motion of quantum systems. In particular, this connection appeared in
the combinatorial approach to the question of completeness of the eigenvectors of the XXX
Heisenberg spin chain [10] with the Hamiltonian

HXXX =
N−1∑

n=1

(
σx

nσx
n+1 + σy

nσy
n+1 + σz

nσz
n+1

)
(1.1)

where σα
n (α = x, y, z) are the Pauli matrices.

Three algebras are connected to this system: the Lie algebra sl2 of rotations, the group algebra
C[SN ] of the symmetric group SN and the infinite dimensional algebra Y(sl2) – the Yangian [7],
with the corresponding R-matrix R(λ) = λI + ηP, where P is the 4 × 4 permutation matrix
flipping the two factors of C2 ⊗ C2.

The Yangian is the dynamical symmetry algebra which contains all the dynamical observables
of the system. It is important to note that the algebras sl2 and C[SN ] are related by the Schur-

Weyl duality in the representation space H =
N⊗
1
C2. This follows from the fact that sl2 and

C[SN ] are each other’s centralizers in this representation space. As a consequence, since the
Hamiltonian commutes with the global generators of sl2 : Sα = 1/2

∑N
n=1 σα

n , α = x, y, z, it
is an element of C[SN ]. This can also be seen from the expression of HXXX in terms of the
permutation operators, which are the generators of the symmetric group SN

∑
α

σα
nσα

n+1 = 2Pnn+1 − Inn+1
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An analogous situation arises in the anisotropic XXZ chain

HXXZ =
N−1∑

n=1

(
σx

nσx
n+1 + σy

nσy
n+1 + ∆σz

nσz
n+1

)
+

(
q − q−1

)

2
(σz

1 − σz
N ) (1.2)

which commutes [11] with the global generators of the quantum algebra Uq(sl(2)) [5]. Here the
role of the second algebra is played by the Temperley-Lieb algebra TLN (q), whose generators

Řn := Řn,n+1(q) in the space H =
N⊗
1
C2 coincide with the constant R-matrix (ω(q) = q − 1/q)

ŘXXZ(q) =




q 0 0 0
0 ω(q) 1 0
0 1 0 0
0 0 0 q


 (1.3)

As in the case of the XXX spin chain, the Hamiltonian (1.2) can be expressed in terms of the
generator (1.3) of the algebra TLN (q) (∆ = (q + q−1)/2)

σx
nσx

n+1 + σy
nσy

n+1 + ∆σz
nσz

n+1 +
ω(q)

2
(
σz

n − σz
n+1

)
= ŘXXZ(q)−

(
ω(q)

2
+ q

)
Inn+1

The dynamical symmetry algebra of the XXZ chain is the quantum affine algebra Uq(ŝl2).
The eigenvectors for both models can be constructed by the coordinate Bethe Ansatz (see

[24]) or by an algebraic Bethe Ansatz [1, 2, 3]. The latter one follows from the main relation of
the QISM for the auxiliary L-operator (see Sec. 2)

Laj(λ) = λI +
η

2

∑
α

σα
a ⊗ σα

j (1.4)

where the indices a and j refer to the corresponding auxiliary and quantum spaces C2
a, C2

j .
The Temperley-Lieb algebra is a quotient of the Hecke algebra (see section 3) and allows

for an R-matrix representation in the space H =
N⊗
1
Cn for any n = 2, 3, . . .. There is corre-

sponding spectral parameter depending R-matrix obtained by the Yang - Baxterization process.
Consequently, it is possible to construct an integrable spin chain [12]. The open spin chain
Hamiltonian is the sum of the TLN (q) generators Xj = Ř− qI

HTL =
N−1∑

j=1

Xj (1.5)

where Xj act nontrivially on Cn
j ⊗Cn

j+1 and as the identity matrix on the other factors of H. The
aim of this work is to describe the quantum algebra Uq(n) which is the symmetry algebra of such
spin system and to show that the structures (categories) of finite dimensional representations of
these algebras Uq(n) and sl2 coincide. In this case Uq(n) and TLN (q) are each other’s centralizers

in the space H =
N⊗
1
Cn. We consider the general case when the complex parameter q ∈ C∗ is not

a root of unity.
Let us note that the relation between TLN (q) and integrable spin chains was actively used

in many works and monographs (see for example [13, 14, 15, 16, 17, 18, 19] and the references
within). However, the authors used particular realizations of the generators Xj , related to
some Lie algebras (or quantum algerbas). Characteristic property of the latter ones was the
existence of one-dimensional representation in the decomposition of the tensor product of two



192 Petr P. Kulish

fundamental representations Vj ⊗ Vj+1. Then Xj was proportional to the rank one projector on
this subspace, and the symmetry algerba was identified with the choosen algebra. We point out
that the symmetry algerba Uq(n) is bigger and its Clebsch - Gordan decomposition of Vj ⊗Vj+1

has only two summands similar to the sl(2) case C2 ⊗ C2 = C3 ⊕ C1.
The dual Hopf algebra Uq(n)∗ was introduced as the quantum group of nondegenerate bilinear

form in [20, 21]. The categories of co-modules of Uq(n)∗ and their generalisations were studied
in [22, 23] where it was shown that the categories of co-modules of Uq(n)∗ are equivalent to the
category of co-modules of the quantum group SLq(2).

2 Bethe Ansatze

Using the L-operator (1.4) a new set of variables (operators in the space H depending on the
parameter λ) is introduced by an ordered product of Laj(λ) as 2× 2 matrices on the auxiliary
space C2

a according to the QISM [1]-[4]

T (λ) := LaN (λ)LaN−1(λ) . . . La1(λ)

T (λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
(2.1)

The entries of the monodromy matrix T (λ) are new variables. The commutation relations of
the new operators (A(λ), . . . , D(λ)) can be obtained from the local relaltion for the L-operator
at one site:

R12(λ− µ)L1j(λ)L2j(µ) = L2j(µ)L1j(λ)R12(λ− µ) (2.2)

where R-matrix is R12(λ) = λI + ηP12 ∈ End(C2
1⊗C2

2) and it acts on the tensor product of two
auxiliary spaces C2

1 ⊗ C2
2, while the index j refers to the space of spin quantum states C2

j . The
relation for T (λ) is of the same form [1]-[4]

R12(λ− µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ− µ)

where T1(λ) := T (λ)⊗ I, T2(µ) = I⊗T (µ). One can extract 16 relations for the entries of T (λ).
We will use only few of them to construct algebraically eigenvectors of the Hamiltonian

HXXX :

A(λ)B(µ) = f(λ− µ)B(µ)A(λ) + g(λ− µ)B(λ)A(µ)
D(λ)B(µ) = f(µ− λ)B(µ)D(λ) + g(µ− λ)B(λ)D(µ)
B(λ)B(µ) = B(µ)B(λ)

where f(λ− µ) = (λ− µ− η)/(λ− µ), g(λ− µ) = η/(λ− µ). Multiplying the RTT-relation by
R−1

12 (λ− µ) and taking the trace over two auxiliary spaces one gets commutativity property of
transfer matrix t(λ):

t(λ)t(µ) = t(µ)t(λ), t(λ) := tr T (λ) = A(λ) + D(λ) (2.3)

The operator B(µ) is a creation operator of the eigenvectors we are looking for. These operators
act on a vacuum state (a highest weight vector) Ω. The Hamiltonian is extracted from the
transfer matrix t(λ) which is a generating function of mutually commuting integrals of motion.
The vector Ω is the tensor product of states corresponding to spin up at each site of the chain:

Ω =
N⊗

1

e(+)
m , σz

me(±)
m = ±e(±)

m , σ+
me(+)

m = 0, σ−me(+)
m = e(−)

m
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Using the explicit form of the L-operator and the definition of the monodromy matrix T (λ) it
is easy to get the relations

C(λ)Ω = 0, A(λ)Ω = a(λ)Ω, D(λ)Ω = d(λ)Ω

where a(λ) = (λ + η
2 )N , d(λ) = (λ− η

2 )N . It follows also from quadratic relation of A(λ), B(µ)
that

A(λ)
M∏

j=1

B(µj) =
M∏

j=1

f(λ− µj)B(µj)A(λ) +
M∑

k=1

g(λ− µk)B(λ)
∏

j 6=k

f(µk − µj)B(µj)A(µk)

and a similar relation for D(λ) and the product of B(µj). Sum of these relations acting on the
vacuum Ω gives the eigenvector of the transfer matrix t(λ)

t(λ)
M∏

j=1

B(µj)Ω = Λ
(
λ|{µk}M

1

) M∏

j=1

B(mj)Ω

under the condition that the parameters µk satisfy the Bethe equations (k = 1, 2, . . . , M)

a(µk)
d(µk)

=
M∏

j 6=k

f(µj − µk)
f(µk − µj)

The eigenvalue is

Λ(λ|{µk}M
1 ) = a(λ)

M∏

j=1

f(λ− µj) + d(λ)
M∏

j=1

f(µj − λ)

This construction of the eigenvectors of quantum integrable models was coined as algebraic
Bethe Ansatz (ABA) [1]-[3].

Originally these eigenvectors of the XXX spin chain were found by H. Bethe at 1931 as a
linear combination of one magnon eigenstates using the local operators σα

j

Ψ(z) =
N∑

k=1

zkσ−k Ω

It is easy to see that Ψ(z) is an eigenvector of HXXX with the eigenvalue 2(z+z−1−2). However,
the condition of periodicity i.e. the requirement that Ψ(z) is also an eigenvector of the shift
operator: Uσα

j = σα
j−1U , results in the quantization of z

UΨ(z) = zΨ(z), zN = 1, or z = exp(2πim/N)

These yields N − 1 states, m = 1, 2, . . . , N − 1 (because the state with z = 1 belongs to the
vacuum multiplet: Ψ(1) = S−Ω). Multimagnon states are given by a Bethe sum or (coordinate
Bethe Ansatz)

Ψ({zj}M
1 ) =

∑

{nk}

∑

P∈Sm

A(P )
M∏

j=1

znk
Pj

σ−k Ω

where the coefficients (amplitudes) A(P ) are defined by the elements P of permutation group
SM , quasimomenta zPj and the two magnon S-matrix [24]

(1 + z1z2 − 2z2)/(2z1 − 1− z1z2), zj =
(
µj +

η

2

)
/

(
µj − η

2

)
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Constructed eigenstates Ψ =
M∏

j=1
B(µj)Ω, M ≤ [N/2] are highest weight vectors for the global

symmetry algebra sl2 with generators

Sα =
1
2

N∑

n−1

σα
n , S+Ψ(µ1, . . . , µM ) = 0

The proof is purely algebraic and it follows from the RTT-relation and the asymptotic of the
monodromy matrix [10]

T (λ) = λNI + 2ηλN−1
∑
α

σα
a ⊗ Sα + O

(
λN−2

)

3 Hecke and Temperley-Lieb Algebras

Both algebras HN (q) and TLN (q) are quotients of the group algebra of the braid group BN

generated by (N − 1) generators Řj , j = 1, 2, . . . , N − 1, their inverses Ř−1
j and subject to the

relations (see [25])

ŘjŘk = ŘkŘj , |j − k| > 1

ŘjŘkŘj = ŘkŘjŘk, |j − k| = 1 (3.1)

The Hecke algebra HN (q) is obtained by adding to these relations the following characteristic
equations obeyed by generators

(
Řj − q

) (
Řj + 1/q

)
= 0. (3.2)

It is known that HN (q) is isomorphic to the group algebra C[SN ]. Consequently, irreducible
representations of the Hecke algebra, as that of SN , are parametrized by Young diagrams. By
virtue of (3.2) we can write Ř using the idempotents P+ and P− (P+ + P− = 1):

Ř = qP+ − 1
q
P− = qI−

(
q +

1
q

)
P− := qI+ X (3.3)

Substituting the expression (3.3) for Ř in terms of X, into the braid group relations (3.1) one
gets relations for Xj , Xk, |j − k| = 1

XjXkXj −Xj = XkXjXk −Xk (3.4)

Requiring that each side of (3.4) is zero we obtain the quotient algebra of the Hecke algebra,
the Temperley-Lieb algebra TLN (q). It is defined by the generators Xj , j = 1, 2, . . . , N − 1 and
the relations (ν(q) = q + 1/q):

X2
j = −

(
q +

1
q

)
Xj = −ν(q)Xj

XjXkXj = Xj , |j − k| = 1 (3.5)

The dimension of the Hecke algebra is N !, the same as the dimension of the symmetric group
SN , the dimension of TLN (q) is equal to the Catalan number CN = (2N)!/N !(N + 1)!. In
connection with integrable spin systems we will be interested in representations of TLN (q) on

the tensor product space H =
N⊗
1
Cn. One representation is defined by an invertible n×n matrix

b ∈ GL(n,C) which can also be seen as an n2 dimensional vector {bcd} ∈ Cn ⊗ Cn [17]. We use
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the notation b̄ := b−1 and view this matrix also as an n2 dimensional vector {b̄cd} ∈ Cn ⊗ Cn.
The generators Xj can be expressed as

(Xj)cd,xy = bcdb̄xy ∈ Mat
(
Cn

j ⊗ Cn
j+1

)
(3.6)

where we explicitely write the indices corresponding to the factors in the tensor product space
H. It is easy to see, that the second relation (3.5) is automatically satisfied and the first one
determines the parameter q (ν(q) = q + 1/q):

X2
j = Xj tr btb̄, tr btb̄ = −

(
q +

1
q

)
= −ν(q) (3.7)

An obvious invariance of the braid group relations (the Yang - Baxter equation) (3.1) in this
representation with respect to the transformation of the R-matrix

Ř → AdM⊗AdM
(
Ř

)
, M ∈ GL(n,C)

results in the following transformation of the matrix b → MbMt. If one uses an R-matrix de-
pending on a spectral parameter (Yang - Baxterization of Ř(q))

Ř(u; q) = uŘ(q)− 1
u

(
Ř(q)

)−1 = ω(uq)I+ ω(u)X (3.8)

where Ř(q)−1 = (1/q)I+ X, then relation (3.5) can be written as

Ř(q−1; q)Ř(q−2; q)Ř(q−1; q) = 0 (3.9)

In terms of constant R-matrices (generators of TLN (q)) this relation has the form
(|i− k| = 1, Ři = Ři,i+1)

(
Ři − qI

) (
ν(q)Řk − q2I

) (
Ři − qI

)
= 0 (3.10)

Replacing in (3.9) the expression Ř(u; q) = ω(u)Ř(q) + u−1ω(q)I, or in (3.5) substituting X =
Ř− qI yields the vanishing of the q-antisymmetriser

I− q−1
(
Ř12 + Ř23

)
+ q−2

(
Ř12Ř23 + Ř23Ř12

)− q−1Ř12Ř23Ř12 = 0 (3.11)

Thus the irreducible representations of TLN (q) are parametrized by Young diagrams con-
taining only two rows with N boxes.

The constructed representation (3.3), (3.6) is reducible. The decomposition of this represen-
tation into the irreducible ones will be discussed in the next section.

4 Quantum Algebra Uq(n)

According to the R-matrix approach to the theory of quantum groups [26], the R-matrix defines
relations between the generators of the quantum algebra Uq and its dual Hopf algebra, the
quantum group A(R). In this paper the emphasis will be on the quantum algebra Uq and its
finite dimensional representations Vk, k = 0, 1, 2, . . . . The generators of Uq can be identified with
the L-operator (L-matrix) entries and their exchange relations (commutation relations) follow
from the analogue of the Yang-Baxter relations (2.2) (withouht spectral parameter)

Ř12La1qLa2q = La1qLa2qŘ12 (4.1)

where the indices a1 and a2 refer to the representation spaces Va1 and Va2 , respectively, and
index q refers to the algebra Uq. Hence the equation (4.1) is given in End (Va1 ⊗ Va2)⊗ Uq.
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In general the L-operator is defined through the universal R-matrix, where a finite dimen-
sional representation is applied to one of the factors of the universal R-matrix

Runiv =
∑

j

R(j)
1 ⊗R(j)

2 := R1 ⊗R2 ∈ Uq ⊗ Uq (4.2)

Laq = (ρ⊗ id)Runiv = ρ(R1)⊗R2 (4.3)

where ρ : Uq → End(Va).
Furthermore, the universal R-matrix satisfies Drinfeld’s axioms of the quasi-triangular Hopf

algebras [7, 25]. In particular,

(id⊗∆)R = R13R12 (4.4)

Thus, choosing the appropriate representation space as the first space, one obtains the co-product
of the generators of Uq from the following matrix equation

(id⊗∆)Laq = Laq2Laq1 ∈ End(Va)⊗ Uq ⊗ Uq (4.5)

The case when Va = C3 is of particular interest and it will be presented below in detail. To this
end the generators of Uq are denoted by {Ai, Bi, Ci, i = 1, 2, 3} and the L-matrix is given by

Laq =




A1 B1 B3

C1 A2 B2

C3 C2 A3


 (4.6)

Multiplying two L-matrices with entries in the corresponding factors Uq(n)⊗ Uq(n) we obtain

∆ (Lab) =
3∑

k=1

Lkb ⊗ Lak =
3∑

k=1

(I⊗ Lak) (Lkb ⊗ I) (4.7)

or explicitly for the generators

∆(B1) = B1 ⊗A1 + A2 ⊗B1 + C2 ⊗B3, (4.8)
∆(B2) = B3 ⊗ C1 + B2 ⊗A2 + A3 ⊗B2 (4.9)
∆(B3) = B3 ⊗A1 + B2 ⊗B1 + A3 ⊗B3 (4.10)

etc. The central element in Uq is obtained from the defining relation (4.1)

b−1LaqbL
t
aq = c2I (4.11)

c2 =
∑

jkl

(
b−1

)
1j

LjkbklL1l

However this central element is group-like: ∆c2 = c2⊗c2. It is proportional to the identity in the
tensor product of representations. The analogue of the Uq(2) Casimir operator can be obtained
according to [26] using L+ := L and L− := (ρ⊗ id) (R21)

−1 as trqL+L−1
− = tr bb̄tL+L−1

− .
In the case when Va, Vq are the three dimensional space Va ' Vq ' C3 and the b matrix is

taken from the references [15, 16]

bij = p2−iδi4−j =
(
b−1

)
ij

(4.12)

c2 is written as

c2 = p

(
1
p
A3A1 + C2B1 + pC3B3

)
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Parameters p and q are related: p2 + 1 + p−2 = −(q + q−1). For the explicit L-operator and
its 3 × 3 blocks we get c2 = qIq where Iq is the identity operator on Vq = C3. The form of
the generators {Ai, Bi, Ci, i = 1, 2, 3} which corresponds to the choice of the b matrix (4.12),
follows from the expression for the Ř and L-matrices L = PŘ = P (qI + X), where P is the
permutation matrix.

For example, we have

B1 =




0 0 0
q 0 0
0 p−1 0


 , B2 =




0 0 0
p−1 0 0
0 q 0


 (4.13)

If we choose b as in equation (4.12) the R-matrix commutes with h ⊗ 1 + 1 ⊗ h where
h = diag(1, 0,−1). As a highest spin vector (pseudovacuum of the corresponding integrable spin
chain [3]) we choose θ = (1, 0, 0)t ∈ C3 [12, 16]. If we act on the tensor product of these vectors
θ ⊗ θ ∈ C3 ⊗ C3 with the coproduct of the lowering operators ∆(Bj), j = 1, 2, 3 we obtain new
vectors. By looking at the explicit forms of the operators Aj ,Bj ,Cj in the space C3 we can
convince ourselves that the vectors (∆(Bi))kθ ⊗ θ, i = 1, 2; k = 1, 2, 3 are linearly independent.
Together with the vectors θ ⊗ θ and

(∆(Bi))4θ ⊗ θ '



0
0
1


⊗




0
0
1




they span an 8 dimensional subspace. The vector ∆(B3)θ ⊗ θ is a linear combination of the
vectors (∆(Bi))2θ ⊗ θ, i = 1, 2. The vector |b〉 = (00p|010|p−100)t spans a one dimensional
invariant subspace. Thus we have the following decomposition

C3 ⊗ C3 = C8 ⊕ C (4.14)

This decomposition can also be obtained using the projectors P+, P− (3.3), (3.6) expressed in
terms of b matrix (vector) (4.12). Due to the commutativity of the R-matrix Řq1q2 with the
co-product (4.5), (4.7) the corresponding subspaces P±(C3 ⊗ C3) are invariant.

Similarly, using ∆3(Y ), Y ∈ Uq(3) one can get the decomposition of

C3 ⊗ C3 ⊗ C3 = C21 ⊕ C3 ⊕ C3 (4.15)

This type of decomposition is valid for any n.
The result of applying the co-product ∆, given by (4.5), on the generators of the quantum

algebra Uq several times can also be presented in the matrix form
(
id⊗∆N

)
Laq = LaqN . . . Laq2Laq1 := T (N) (4.16)

where ∆N : Uq → (Uq)
⊗N , ∆1 := id, ∆2 := ∆, ∆3 := (id⊗∆) ◦∆, etc. In general case of the

tensor representation of TLN (q), with the space Cn at each site, the generators of the algebra
Řqkqk+1

:= Řk,k+1 commute with the generators (4.16) of the global (diagonal) action of the

quantum algebra Uq(n) in the space H =
N⊗
1
Cn. This follows from the relation

Řk,k+1Laqk+1
Laqk

= Laqk+1
Laqk

Řk,k+1

and the possibility due to the co-associativity of the coproduct to write the product of of Laqj

as

T (N) = LaqN . . . Laqk+2
∆k(Laqk

)Laqk−1
. . . Laq1
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Hence,

Řk,k+1T
(N) = T (N)Řk,k+1

Thus, the algebras Uq(n) and TLN (q) are each other’s centralizers in the space H. The tensor
representation of TLN (q) in H decomposes into irreducible factors whose multiplicities are given
by the dimensions of the irreducible representations of the algebra Uq(n), corresponding to the
same Young diagrams

H =
N⊗
k
Cn =

N⊕
k
pk(n)Wk(N) =

N⊕
k
νk(N)Vk(n) (4.17)

In this decomposition the index k parametrizes the Young diagrams with two rows and N boxes
and multiplicities are given by the dimensions of the corresponding irreducible representations

pk(n) = dimVk(n), νk(N) = dimWk(N) (4.18)

of the algebras Uq(n) and TLN (q), respectively. As for the finite dimensional irreducible rep-
resentations of the Lie algebra sl2, V0(n) = C is the one-dimensional (scalar) representation
and the fundamental representation of the algebra Uq(n) is n dimensional, V1(n) ' Cn. The
dimensions of other representations follow from the trivial multiplicities of the factors in the
decomposition of the tensor product of the Vk(n) and the fundamental representation V1(n) into
two irreducible factors, as for the sl2,

V1(n)⊗ Vk(n) = Vk+1(n)⊕ Vk−1(n) (4.19)

Thus, for the dimensions pk(n) = dimVk(n) the following recurrence relation is valid

n · pk(n) = pk+1(n) + pk−1(n) (4.20)

with the initial conditions p−1(n) = 0, p0(n) = 1, whose solutions are Chebyshev polynomials
of the second kind

pk(n) =
sin(k + 1)θ

sin θ
, n = 2 cos θ (4.21)

The multiplicity νk(N), or the dimensions of the subspaces Wk(N) in (4.17) is the number
of paths that go from the top of the Bratteli diagram to the Young diagram corresponding to
the representation Wk(N). If λ ` N is the partition of N , λ = (λ1 ≥ λ2|λ1 + λ2 = N), then
k = λ1 − λ2 and

νk(N) = νk+1(N − 1) + νk−1(N − 1) (4.22)

The subspaces invariant under the diagonal action of the quantum algebra Uq(n) on the space
H, can be obtained using the projectors (idempotents), which can be expressed in terms of the
elements of the Temperley-Lieb algebra TLN (q). Using the R-matrix depending on a spectral
parameter, the projector P

(+)
N on the symmetric subspace can be written in the following way

[4, 27]

P
(+)
N ' P

(+)
N−1ŘN−1N

(
qN−1; q

)
P

(+)
N−1 (4.23)

Similar construction can be done with the underlying Lie algebra sl(3). Then the correspond-
ing q-antisymmetrizer P

(4)
− which defines a quotient of the Hecke algebra is [4, 27]

P
(4)
− ' P

(123)
− Ř3 4(q3; q)P (123)

− (4.24)
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This form follows from the intertwiner of four monodromy matrices T1(u1)T2(u2)T3(u3)T4(u4)

J (4) = R1 2R1 3R2 3R1 4R2 4R3 4 (4.25)

where Ri j := Ri j(ui/uj). Multiplying by appropriate product of the permutation operators
Pk k+1 one can get the expression in terms of the baxterized Hecke generators

Ř1 1(u3/u4)Ř2 3(u2/u4)Ř1 2(u2/u3)Ř3 4(u1/u4)Ř2 3(u1/u3)Ř1 2(u1/u2)

The q-antisymmetrizer (4.24) is obtained by fixing shifts of the spectral parameters uk = uq1−k

[4, 27].

Theorem 4.1. Consider the quotient of the Hecke algebra HN (q) (N > 3) by the ideal I
generated by the q-antisymmetrizers P

(4)
− ,

H(4)
N (q) = HN (q)

/
I

(
P

(4)
−

)
(4.26)

The tensor product representation of H(4)
N (q) in the space HN = ⊗N

1 Cn (n ≥ 3) with the q-
antisymmetrizers P

(3)
− of rank 1 define the quantum algebra Uq(sl(3);n) as the centralizer algebra

of H(4)
N (q).

Let us mention that although the spectrum of the spin chains related to the general Temperley-
Lieb R-matrix was found by the fusion procedure and a functional Bethe Ansatz [12], it would
be nice to get the corresponding eigenvectors. Also the subject of reconstructing algebras from
their representation ring structure is actively discussed in the literature (see e.g [28]).
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