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Introduction
The spatial and temporal progress of a disease in a field of non-

moving individuals is an important issue which should be understood, 
in particular to set out control strategies. Models to describe the 
transmission are usually formulated using deterministic equations 
[1,2] but spatiotemporal stochastic models are also available [3-5]. The 
work presented here is motivated by an agricultural issue concerning 
sugarcane which can be infected with a yellowing and stunting disease 
called the sugarcane yellow leaf syndrome. The causal agent sugarcane 
yellow leaf virus (ScYLV) is transmitted by the aphid melanaphis 
sacchari. It is well-known that virus-free plants are quickly infected due 
to proximity to other infected plants. We consider that the infection 
rate of susceptible units at a given time depends on the distance to the 
infected areas. This question has been investigated by many authors [6-
8]. Refer to Shaw [9] for a review of the application of spatiotemporal 
stochastic models in plant pathology.

Here, we have developed an approach based on survival analysis 
techniques by considering times to infection and introducing an 
infection factor to characterize the mechanisms which underlie the 
spread of the disease.

In section “Data”, we describe the nature of the data. Section 
“The model” presents the model. In section “Maximum likelihood 
estimation” we give a method to estimate the model parameters. 
Section “Applications” is devoted to application to real world data and 
simulation. Some concluding remarks are given in section “Concluding 
remarks”.

Data
We consider data of the following form: n units occupying the 

vertices of a finite, two-dimensional rectangular lattice L are observed. 
Each unit can be labeled by the vertex co-ordinates x. At set dates tj, j= 
1,…,m, infected units are recorded (t0 = 0).  

For a unit x ε L, the observation is a m-dimensional vector δx = (δx,1 
δx,2…, δx,m), where for j = 1, …., m,
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An example of such data is given by the recording of the spread of 
ScYLV in a sugarcane field with 97 rows and 17 columns. The infected 
plants are recorded after 6, 10, 14, 19 and 23 weeks. The distance 
between rows is 0.5 m, and between columns 1.5 m. The numbers of 
infected plants are successively 6, 24, 68, 205 and 292. Figure 1 gives 

maps of the spread. Another example is given by Marcus et al. [7]. The  
spread of the citrus tristeza virus (CTV) in a citrus orchard is observed. 
The plants are arranged in a two-dimensional finite rectangular lattice 
with an inter-row distance of 5-6 m and a between column distance of 
4 m. We have a total of 1008 units. 131 trees were recorded as infected 
in 1981 and 45 newly infected trees appear during the subsequent year. 
The map of the 176 infected trees is presented in figure 2.

In a series of papers, Gibson [3,4,10] and coworkers analyze these 
data and obtain accurate parameters values for the spread of CTV 
infection with a highly complex procedure. We suggest a simpler 
approach and  consider more than two sequences of data in order to 
handle ScYLV data.
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Abstract
We propose a model to describe the spread of a disease among individuals regarded as fixed. The approach 

relies on a survival analysis technique working out times to infection. We reformulate the force of infection and intro-
duce an infection factor referring to proportional hazard models. Properties of the MLE of the model parameters are 
studied. Results on real data are displayed and a simulation study is conducted.

Figure 1: Data from CIRAD -Guadeloupe (FWI) Maps of newly infected plants 
at successive times in weeks.
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The Model
Let us denote by Tx the time to infection for unit x. We define the 

infection rate by analogy to the hazard function as 

0

Pr( | )lim ( )x x
xdt

T t dt T t t
dt

λ
→

≤ + >
=                                             (1)

Thus λx (t) dt is the probability for a unit in position x to be infected 
in a small interval (t,t + dt) given that the unit was non-infected before 
t. It is the probability of instantaneous infection or the infection hazard 
function.

We assume that:

0( ) ( ) ,x xt tλ φ λ=                                                                       (2)                    
where λ0 is the baseline rate of transmission and where ϕx is the infection 

factor or force of infection at time t. This factor acts as the acceleration 
factor in reliability [11]. Here, we consider that the mechanism of 
transmission relies on contact, that is to say proximity to infected 
areas; function ϕx depends on a distance d to infected area at time t. 
Many choices of distance and many forms for ϕx can be considered. A 
requirement is that ϕx should be a decreasing function of the distance 
to infected areas. The closer a unit x is to infected units, the greater ϕx(t) 
should be.

We have selected the following expression:

{ }( ) exp inf ( , )
t

x y I
t d x yφ

∈
= −γ                                                       (3)

where It is the set of infected items at time t and d is the Euclidian 
distance. Combining (2) and (3) we obtain a model which can be viewed 
as the well known proportional hazards model introduced by Cox [12] 
where the covariate for a given items is characterized by the distance 
to infected areas. Thus in our model we have only one covariate which 
is time dependent and the baseline hazards function is assumed to be 
constant [13].

Note that one can add some more covariates (for e.g. species) 
depending on the purpose of the study.

Figure 3 displays the infection factor for different values for  γ. One 
can see how the contamination factor behaves depending on parameter 
γ value for a same distance.

As mentionned in section “Data”, the data collected are usually 
grouped and the exact times to infection are not available. The inference 
relies on ‘snapshots’ of the epidemic at different times t1, … tm. For each 
‘snapshot’ the infection factor for unit x is computed as ϕx,j = exp {- γ 
infyeIj d (x,y)} with Ij as the set of infected units at time tj.

For any unit x, the infection rate at time t is: 

1,0 [ ]
1

( ) 1 ( ).
j j

m

x xj
j

t tt tλ φ λ
−

=

= ∑                                                           (4)

Thus λx(t) is a stepwise function where each step is a proportional 
hazards model [14].

Given expression (4), we express the probability for the time to 
infection to be greater than t as
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and the probability density function of Tx is
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In the following we assume that the times to contamination are 

independent and we propose a maximum likelihood method to 
estimate the parameters (λ0,γ) of the model using approximations of 
the times to infection.

Let us remark that because of the independence assumption it is 
not possible to consider correlation between pairs of observation in 
the classical way (that is to say computing correlation coefficient). But 
the link between times to infection of two non-infected units x and 
y can be considered relying on the proportional hazard formulation 
which allows to write: λx(t) = ϕx(t)/ ϕy(t) λy(t) and the ratio ϕx(t)/ ϕy(t) 
measures in a sense the relationship between x and y at time t.

Maximum Likelihood Estimation
Citrus tristeza virus

Before investigating the general case we consider the situation 

Figure 2: Location of trees infected by citrus tristeza virus. Black points 
indicate infected trees in 1981, and white points indicate trees discovered 
as infected in 1982.

Figure 3: Representation of infection factor versus distance to infected area 
for = 0.068 (solid), 0.11 (dots) and 1.3 (dashes).
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described by Marcus et al [7]. In this case, we only have two ‘snapshots’.

Let δx = 1 if the tree is infected and δx = 0 if it is not.

The likelihood is:
1

0 0 0 0( , ) [ exp{ / 2}] [exp{ }] ,xx
x x x

x

L δδλ λ φ λ φ λ φ
−

∈χ

γ = − ∆ − ∆∏
where ϕx = e xdλ− with dx the distance to the closest infected tree and ∆ 
the difference between the data of inspections.

Let ,x
x

k δ
∈χ

= ∑ the loglikelihood is expressed as:

0 0 0log ( , ) log (1 / 2) ,xd
x x x x

x x
L k d d eλ λ δ λ δ −γ 

∈χ ∈χ

γ = − γ − ∆ −∑ ∑
and the likelihood equations are:

0
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δ
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δ λ δ
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A Newton-Raphson method is implemented to obtain the solution 
to these equations. We compute: γ̂ = 0.142 and λ0 = 4.186 10-3.

Figure 4 shows epidemics simulated with the model. These images 
can be compared with those displayed by Gibson and Austin [3].

Simulating 10000 snapshots, the bias is 0.308 10-4 for λ0 and 0.666 
10-3 for γ. The mean squared error is 2.225 10-6 for λ0 and 1.707 10-3 
for γ.

The general case
Let us now consider the situation described in figure 1. Let ∆i = 

ti –ti-1. At time ti-1, some units are already infected and they have no 
contribution to the likelihood. Some non-infected units at this time will 
be infected before ti. Some others will remain non-infected at ti. If unit x 
is infected in [ti-1,ti ], we have δx,i–δx,i-1 = 1 and we assume that infection 
occurred at time ∆i/2 = (ti-1 + ti)/2}. In this case, the contribution to the 
likelihood is: λ0ϕx,i exp {-λ0ϕx,i∆i/2}. If unit x is not in the state infected 

in this interval, δx,i=0 and the contribution to the likelihood is exp {- 
λ0ϕx,i∆i}. δx,i-δx,i -1 represents the newly infected units between[ti-1,ti ].

The likelihood is then:
, , 1 ,( ) 1

0 0 , 0 , 0 ,
1

( , ) [ exp{ / 2}] [exp{ }] .x i x i x i
m

x i x i i x i i
x L i

L δ δ δλ λ φ λ φ λ φ−− −

∈ =

γ = − ∆ − ∆∏∏ (5)

where δx,0 = 0

Computing the log-likelihood leads to:
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where k =  , ,1( )x m x
x L

δ δ
∈

−∑
This log-likelihood is concave (see proof in annex). Thus 

there is a unique maximum likelihood estimate (
0̂λ ,γ̂ ). Since the 

likelihood equations have a unique solution, then (
0̂λ ,γ̂ ) is consistent, 

asymptotically normal and efficient [15]. 

We use a Newton-Raphson algorithm to obtain the estimates. A 
simulation study and an application on ScVL data are conducted in the 
following section.

Figure 4: Snapshots of simulated infection using maximum likelihood esti-
mates of λ0 and γ. (e) is the observed CTV infection.

Figure 5: Simulations of the propagation of a disease with different initial 
positions of infected units with parameters values λ0= 0.159 and γ = 0.34.
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Applications
Applying the method to the ScVLC data described in the 

introduction, we obtain: γ̂ = 0.23384 and 0̂λ = 0.02224.

We applied the method on simulated data. We consider a lattice 
with 50 rows and 50 columns. The inter-row distance is equal to the 
inter-column distance: 1 m. We set 4 infected units at the initial time 
and observed the spread in successive windows of 4 units of time length 
for parameters values λ0 = 0.159 and γ = 0.34. We generated data using 
the following scheme:

For t = 4, 8, 12 and for each non-infected units x at t – 4

1. use equation (3) to compute ϕx(t), the infection factor,

2. draw z from an exponential distribution with parameter ϕx(t)λ0,

3. if z < t, set x infected.

Four different locations of the initial infected units are investigated. 
Note that dimension of the lattice, number and position of the infected 
units at the initial time was chosen arbitrarily as the values for λ0 and 
γ. Each row in figure 5 shows sequences of images for a single data set.

Table 1 gives the mean of the maximum likelihood estimates, the 
bias and the root mean square error (RMSE), for a large number of 
repeated data sets generated with the previous setting. The results 
surmise that the estimators are asymptotically unbiased and consistent 
in mean square.

Note that confidence intervals for γ and λ0 can be obtained using 
properties of MLE.

Concluding Remarks
We have suggested a simple approach to model the spread of a 

disease in a field relying on survival analysis methods dealing with 
approximation of times to infection. This approach allows for further 
developments. For example, tests of hypothesis can be investigated to 
compare the spread of different diseases or spreading in different places 
to answer the question: are the mechanisms of transmission different? 
We have given some results on properties of estimators involved in 
the model. In this first approach, the infection factor is considered 
depending on a distance to infected areas, but other factors can be 
incorporated in the model and a Bayesian development could be a 
possible direction as practitioners might have prior information on the 
propagation mechanism.

Annex: Existence and uniqueness of the likelihood estimates
Let ξx,i(γ) = ϕx,i [1 - (δx,i + δx,i-1)/2] ∆i. We denote:

1 ,
,

m

x i x i∈χ =

≡∑∑ ∑ to 

lighten the notations. dx,i is the distance for unit x to the closest infected 
unit at time ti.                                                                                     

The first derivatives of the log-likelihood are:
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The likelihood equation system is then equivalent to:
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φ is a decreasing function. Indeed, the derivative of φ is:
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 Since ξx,i > 0, we write:
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 Applying the Cauchy-Schwarz inequality, we have φ’ (γ) ≤ 0, for 
all γ.

Furthermore , , , 1 ,0
lim [1 ( ) / 2] .x i x i x i i x ic
γ

ξ δ δ −→
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(8) is greater than , , 1 max ,
,

( )( )x i x i x i
x i

d dδ δ −− −∑ where dmax is the 

maximum distance between two units. Thus 
0
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which prove lim
γ →+∞

 that φ(γ)<0 since , lim 0.x iγ
ξ

→+∞
=  

It follows that φ(γ) = 0 has unique solution.
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