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Modelling and Optimal Control of Toxicants on Fish 
Population with Harvesting

Abstract
Toxic in water bodies is a worldwide problem. It kills fish and other aquatic animals in water. Human beings are affected by this indirectly through eating affected fish. 
In this paper, a model for controlling toxicants in water is formulated and analysed. Boundedness, positivity and analysis of the model are examined where four steady 
states are determined by using Eigen-value analysis and found to be locally stable under some conditions. The optimal control strategies are established with the help 
of Pontryagin’s maximum principle. The simulations for the model with control show that when control is applied the results reveals that the amount of toxic is reduced 
and hence there is an increase in fish population for both prey and predator populations. It is recommended that the government has to introduce laws and policies 
which ensure that the industries treat waste water before they are discharged into water bodies and to develop a system for waste recycling.
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Introduction

Over several years, the effects of toxicants on ecological communities have 
become major environmental problem. Due to the growing of human needs, 
the industries are producing a large amount of waste that contains toxicants 
which are exposed to environment that cause many species to extinct and 
several others are at the risk of extinction [1]. Currently, researchers are 
taking interest in the eco toxicological effects of toxicants released by the 
marine and industries as well. For example, [2] incorporated the effects of 
toxic substances in a two species Lotka-Volterra competitive system by 
considering that some species produce a substance toxic to others only 
when others are present. The same idea was extended by [3] a two species 
competing fish effect of a toxicant on the dynamics of a spatial fishery, 
species which are commercially exploited. [1], in his study of dynamical 
behaviour of a two-species competitive system affected by toxic substances, 
modified the deterministic model by incorporating the effect the diffusion and 
fluctuation of environmental whereas [4] studied a bio-economic harvesting 
of prey-predator fishery in which all species are infected by toxicants which 
are released by other species. From reviewed literature, it is seen that most 
of studies concentrated on the effect of toxic to aquatic organism (fish) and 
environment as well. In this paper, it is intended to model and apply control 
strategies to toxic substances in fish population during harvesting.

Model Formulation

The formulation of the model will include ideas of Holling type II- function 
response which is most typical and applied where the rate of prey 
consumption by predator rises as prey density increases, but eventually 

level off at plateau or asymptote at which the rate of consumption remains 
constant regardless of the increases in prey density. The model to be 
formulated is based on the findings of [4] and [5]. Motivated by the findings 
of [5] who did their study on a focus on long-run sustainability of a harvested 
prey-predator system in the presence of alternative prey introduced the 
following system of differential equation:

11 ,dN N NPrN
dT K N

α
α

 = − −  + 
				                    (1)

1 1
1 11 ,dP NP NP y P d

dT N K
β α
α

 = + − − + +  
			                  (2)

where

)(TNN = is the size of prey at time T,

( )P P T= is the size of predator at T,

K is the environmental carrying capacity of prey, 

r is the intrinsic growth rate of prey,

1α is the predation coefficient,
α is half saturation constant,

1β is the conversion rate factor ( )1 1β < ,

1d is the digestion factor relative to alternative prey,

1y is the mortality rate of predator population and 

[4]studied the harvesting of prey-predator fishery in the presence of toxicity 
and developed the following nonlinear system:

31
1 1 1 2 1 1 1 11 ,dx xr x x x c Ex x

dt L
α γ = − − − − 

 
			                  (3)

22
2 2 1 2 2 2 2 2 ,dx r x x x c Ex x

dt
β γ= − + − − 			                 (4)

where

)(11 txx = is the size of prey population at time t,

)(22 txx = is the size of predator population at time t,

1r is the maximum specific growth rate of prey population,

2r is the relative rate at which the predator dies out in absence of prey,
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due to toxic substance, 1c is the catchability coefficient of prey c2 is the 
catchability coefficient of predator, u is the toxicants control variable, 

1c EX  is the harvesting effort of prey, 2c EY  is the harvesting effort of 

predator, 3
1Xγ  is the infection of prey fish by external toxic substance, 

2
2Yγ  is the infection of predator fish by external toxic substance Yµ is 

the natural death rate of predator, 1 XrX
L

 − 
 

 is the logistic growth of prey 

fish, XY
k X
α
+

 is the predation rate, XY
k X
βα
+

 is the amount of prey biomass 

converted to predator biomass.

Model Analysis

In this section, the formulated model above (5) will be qualitatively analysed 
to get the dynamical features that help to understand the effects of toxic on 
a prey-predator system. The boundedness and the positivity of the solution 
will be determined.

Boundedness

In this section we show that the system (5) is bounded or well behaved by 
considering the following lemma.

Lemma 1

All the solutions of the system (5) which start in 2
+



 are uniformly bounded 

in the region ( ) 2, : ,  for any 0KC X Y W
S

ε ε+  = ∈ = + >  
  


,[4] where 

2
+



 are the positive real numbers.

Proof

We define the following function;
1( , ) ,W X Y X Y
β

= + 					                    (6)

whose time derivative is

1 .dW dX dY
dt dt dtβ

= + 				                 (7)

Equations (5) are substituted to equation (7) to get
3

1 11dW X XYrX X c EX
dt L k X

α γ = − − − −  + 

2
2 2

1 XY Y Y c EY
k Y
βα γ µ

β
 + − − − + 

or

1dW XrX Y
dt L

µ
β

 = − − 
 

For each 0>S we get

1dW X SSW X r S Y
dt L

µ
β

   − + ≤ − + −       
.

Choose { }min 0,S µ<  such that

1dW XSW X r S
dt L

  = ≤ − +    

1dW XSW rX XS
dt L

 + ≤ − + 
 

			                 (8)

The maximum value of (8) is given by 
r
SrL

2
)( 2+

so that
2( ) .

2
dW L r SSW
dt r

+
+ ≤

L is the environmental carrying capacity of the prey population,

E is the combined harvesting effort,

c1 is the catchability coefficient of prey,

c2 is the catchability coefficient of predator,

1γ is the coefficient of toxicity to the prey species,

2γ is the coefficient of toxicity to predator species.

The model to be formulated lies in the frame work of the systems above 
i.e. ((1), (2) and (3), and (4)). The model will be formulated by extending 
the work of [5] who incorporated toxicity terms to both species subject to 
harvesting efforts to both species which are adopted from a work of [4]. The 
model has two state variables: ( )Y t  the population of a prey fish and ( )Y t , 
the population of predator fish.

In formulating model, the following assumptions are taken into 
considerations:

1. Each species is infected by some external toxic substance from external 
sources,

2. Prey are directly affected by external toxic while predator are indirect 
affected,

3. The effect of external sources is assumed to be different,

4. The prey reproduction is influenced by predators only,

5. The predator’s growth depends on the prey which it catches,

6. In the absence of predation, toxicity and harvesting, the prey grows 
exponentially,

7. Both prey and predator are subjected to harvesting efforts,

8. There is no any disease that affects prey and predator fish,

9. No natural death of prey population.

Taking into account the above considerations and assumptions; we have 
the following schematic flow diagram Figure 1:

From the flow diagram (Figure 1) and assumptions, the resulting system is 
governed by the following equations:

3
1 11 ,dX X XYrX X c EX

dt L k X
α γ = − − − −  + 

2
2 2 ,dY XY Y Y c EY

dt k X
βα γ µ= − − −
+

			                 (5)

with initial conditions 0)0( ≥X  and 0)0( ≥Y ,

where:

X is the Prey fish, Y is Predator fish, r is the Prey growth rate, α is the 
predation rate, β  is the conversion rate of prey biomass to predator 
biomass, k  is the amount of prey consume for predator half satisfaction, 
µ  is the natural death rate of predator, E is the harvesting effort, 1γ is the 

death rate of prey due to toxic substance, 2γ  is the death rate of predator 

X Y 
1 XrX

L
 − 
 

3
1Xγ

(1 )XY
k X
α β−
+

XY
k X
α
+

XY
k X
βα
+

Yµ

2
2Yγ

2c EY

1c EX

Figure 1. The model flow diagram for prey-predator interaction without control 
of toxic and harvesting.
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Let 
r
SrL

2
)( 2+  be equal to 0.K >

Then

.dW SW K
dt

+ ≤ 					                  (9)

The inequality (9) is a first order differential inequality. Its solution is 
obtained by using Integrating factor .stIF e=

Multiplying equation (9) by the integrating factor we get

  KeSWe
dt

dWe ststst ≤+ 				               (10)

Equation (10) has a solution

. stCe
S
KW −+≤ .					                  (11)

Apply the initial conditions 0tW W=  and C
S
KW +≤0  leading to 

C
S
KW +≤0

, or 
S
KWC −= 0

.

This implies that 0 .stK KW W e
S S

− = + − 
 

As ∞→t , 0→−ste  yielding

S
KWC −= 0

. 

We thus find that all the solutions of the equations 5 that start in 2
+

  are 
confined in the region C, where ( ) 2, : ,  for any 0KC X Y W

S
ε ε+  = ∈ = + >  

  
 [4].

Positivity of the solution

For the model (5) to be ecologically meaningful and well posed, we need 
to prove that all solutions with positive initial data will remain positive for all 
the time 0t ≥ .

Theorem 1

Let 0 0,  0X Y > . Then the solution of the model (5) is positive for 0.t∀ ≥
Proof

To prove the theorem, we use all equations of the system (5)

From the first equation of prey population, we have

3
1 11dX X XYrX X c EX

dt L k X
α γ = − − − −  + 

or

1dX XrX
dt L

 ≤ − 
 

.

The above equation is a non-linear differential inequality which can be 
solved which can be solved by using separation of variables. So

2

dX r dt
XL X L

≤
−

,

which imply that 

,
( )
dX r dt

X L X L
≤

−

which has a solution

ln ln( ) rX L X t c
L

− − ≤ + .

Similarly

ln X r t c
L X L

  ≤ + − 
or

r t
L

LcX
e c
−

≤
+

.					                 (12)

Applying initial conditions to (12) we get

0 r t
L

cLX
e c
−

=
+

.

Then 

0

0

Xc
L X

=
−

, 

Substitute the value of c  into (12) to get

0

0 0( )
r t
L

X LX
L X e X

−
≤

− +
.

As t →∞  then 0
r t
Le

−
→

Thus

0 X L≤ ≤ .

Similarly, using the second equation of system (5), positivity of solutions 
can be established. Hence, both the solutions of the system (5) that are 
initiated in 2

+


 are confined in the region C, where 

( ) 2, : ,  for any 0KC X Y W
S

ε ε+  = ∈ = + >  
  



.

Equilibrium points and stability analysis

Here we study the existence and stability of steady states. The model has 
four equilibrium points. These are trivial steady state 0E , predator free 
steady state 1E , prey free steady state 2E  and interior steady state 3E .

Definition

A steady state of a system (5) is a solution XtX =)( , YtY =)( where X 
and Y are solutions of the algebraic equation ( ),  0f X Y = .

So we set 0==
dt
dY

dt
dX

and seek for the steady state solution. The 

system (5) becomes

3
1 11 0X X YrX X c EX

L k X
α γ

∗ ∗ ∗
∗ ∗ ∗

∗

 
− − − − =  + 

		                (13)

2
2 2 0X Y Y Y c EY

k X
βα γ µ

∗ ∗
∗ ∗ ∗

∗ − − − =
+

			                (14)

The trivial steady state

The trivial steady state is obtained as follows:

From equation (14), we have

2
2 2 0X Y Y Y c EY

k X
βα γ µ

∗ ∗
∗ ∗ ∗

∗ − − − =
+

Factor out Y ∗  to get

2 2 0.XY Y c E
k X
βα γ µ

∗
∗ ∗

∗

 
− − − = + 

Either 0Y ∗ =  or 
2 2 0X Y c E

k X
βα γ µ

∗
∗

∗ − − − =
+

Substitute 0Y ∗ = into (13) to get

3
1 11 0XrX X c EX

L
γ

∗
∗ ∗ ∗ 

− − − = 
 

or

( )
2

3
1 1 0rXX r c E X

L
γ

∗
∗ ∗+ − − =

Factor out X* and solve for X* to get

2
1 1( ) 0.rXX X r c E

L
γ

∗
∗ ∗ 

+ − − = 
 
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Either 0X ∗ =  or

2
1 1( ) 0rXX r c E

L
γ

∗
∗ + − − = 				                (15)

So trivial steady state ( )0 , (0,0)E X Y∗ ∗ =

The predator free steady state

The predator free steady state is obtained by solving for X* in (15).

The other 
2

1 1

1

4 ( )

2

r r r c E
L LX

γ

γ
∗

−   + + −   
   =

Therefore, 

the predator free steady state
2

1 1

1
1

4 ( )
( , ) ,0

2

r r r c E
L LE X Y

γ

γ
∗ ∗

     − + + −       =  
 
 
 

The prey free steady state

This steady state E2 is calculated as follows:

From 2 2 0X Y c E
k X
βα γ µ

∗
∗

∗ − − − =
+

 it follows that

2
2

1 .XY c E
k X
βα µ

γ

∗
∗

∗

 
= − − + 

			              (16)

Substitute (16) into (13) to get

3
1 11 0.X X YrX X c EX

L k X
α γ

∗
∗ ∗ ∗

∗ ∗
∗

 
− − − − =  + 

		              (17)

Factor out X ∗ to get

2
1 11 0X YX r X c E

L k X
α γ

∗ ∗
∗ ∗

∗

  
− − − − =   +  

Either 0X ∗ =  or

2
1 11 0X Yr X c E

L k X
α γ

∗ ∗
∗

∗

 
− − − − =  + 

			                (18)

When 0X ∗ = , then from (16), 2

2

( )c EY µ
γ

∗ +
= −

Thus the prey free steady state is 2
2

2

( )( , ) 0, .c EE X Y µ
γ

∗ ∗  +
= − 
 

The interior steady state

The interior steady state 3 ( , )E X Y∗ ∗  is determined as follows:

Substitute (16) into (18) to get 

*4 *32
1 2 1 22rX k X

L
γγ γ γ γ + + 

 

2 *2
1 2 2 1 2 2 1 22 rk k c E r X

L
γ γ γ γ γ γ γ + + + + − 

 

2 2
2 2 12rk k c E

L
γ α β γ + + + 
 

2 2
2 2 2 2 1 2( ) 2 ) ( ( ) ) 0c E k r X k c E c Ek k rµ γ µ γ γ+ + − − + + − = 	              (19)

Let

1 2a γ γ= , 2
1 22rb k

L
γ γ γ= + ,

2
2 1 12 rc k k c E r

L
γ γ = + + − 
  ,

( )2 2
2 2 1 2 22 2rd k k c E c E k r

L
γ α β γ µ γ= + + + + − ,

( )( )2 2
2 2 1 2e k c E c Ek k rµ γ γ= − + + −

4 3 2 0aX bX cX dX e∗ ∗ ∗ ∗+ + + − = 			                (20)

Equation (20) is very difficult to solve. With help of Mathematica 9.0, 
the roots of (20) which are the interior steady state 3 ( , )E X Y∗ ∗  can be 
estimated by

3
1 1(1 ) 0X X YrX X c EX

L k X
α γ

∗ ∗ ∗
∗ ∗ ∗

∗− − − − =
+

and

2
2 2 0X Y Y Y c EY

k X
βα γ µ

∗ ∗
∗ ∗ ∗

∗ − − − =
+

when X ∗ and Y ∗  are non-negative and roots of equation (20) are defined.

Stability of the of the equilibrium points: We study the stability of each 
equilibrium point by first computing the Jacobian matrix corresponding to 
the model equation calculated at each steady state.

Let

3
1 1(1 )X XYf rX X c EX

L k X
α γ= − − − −
+

and

2
2 2 .XYg Y Y c EY

k X
βα γ µ= − − −
+

Then the Jacobian of the functions f and g is given by

( , )

f f
X YX Y
g g
X Y

∂ ∂ 
 ∂ ∂=  
∂ ∂  ∂ ∂ 

J

2
1 12

2 22

2 3
( )

( , ) .
2

( )

rX Yk Xr X c E
L k X k X

X Y
Yk X Y c E

k X k X

α αγ

βα βα γ µ

 − − − − − + + =
 

− − − + + 

J 	              (21)

The trivial steady state

( )0 ( , ) 0,0 .E X Y∗ ∗ =

( )0 ( , ) 0,0 .E X Y∗ ∗ =

The Jacobian (21) at trivial steady state becomes

1
0

2

0
(0,0)

0 ( )
r c E

E
c Eµ

− 
=  − + 

J

Its Eigen values are given by 1 1r c Eλ = −  and ( )2 2c Eλ µ= − +

The trivial steady state is stable when 1r c E<

From the result above, it can be seen that the population is at normal state 
at this point.

The predator free steady state

2

1 1

1
1

4 ( )
( , ) ,0 .

2

r r r c E
L LE X Y

γ

γ
∗ ∗

   − + + −   =  
 
 
 

The Jacobian (21) at predator free steady state becomes
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( )
2

1 1

1
1

4
, 0

2

r r r c E
L LE

γ

γ

   − + + −   
 
 
 
 

J

( )

2
12

1 1

2
1

3
2

0
2

rA Ar B c E
L kL A

A c E
kL A

α
γ γ

βα µ
γ

 + − − − + =
 

− + − + 

where

2

1 12 4 ( )rA r L r c E
L

γ= − + − 	

2

1 12

1

4 ( )
.

4

r r r c E
L LB

γ

γ

−
+ + −

=
 		             (22)

The Eigen values of the Jacobian are given by

( )2
1 12

1

3rAr B c E
L

λ
γ

= + − + 	

( )2 2
12
A c E

kL A
βαλ µ
γ

= − +
− + .

Let 1 2
1

rAa r
L γ

= + and ( )2
1 13b B c E= + . Then

1 1 1a bλ = −
or

( )1 1 1R bλ = − 					                (23)

where 
1

1
1

aR
b

= . Thus if 1 1R < , then 1λ  is negative.

For ( )2 2
12
A c E

kL A
βαλ µ
γ

= − +
− + ,

we let 2
12
Aa

kL A
βα
γ

=
− +

and ( )2 2b c Eµ= + . Thus

2 2 2a bλ = − or

( )2 2 21R bλ = − .					                   (24)

If 2 1R <  then the eigenvalue 2λ  is negative. So the predator free steady 
state is locally asymptotically stable since 1 1R <  and 2 1R <

The prey free steady state

2
2

2

( )( , ) 0, .c EE X Y µ
γ

∗ ∗  +
= − 
 

Substitute prey free steady state in the Jacobian (21) to get

2
1

22

22
2

2

( ) 0
( )0,

( )

c Er c E
kc E

c E c E
k

α µ
γµ

βα µγ µ
γ

+ + −  +  − =   +  − + 
 

J

The Eigen values are given by

2 2c Eλ µ= + and 2 2c Eλ µ= +

For 1λ  we let 
( )2

3
2

c E
a r

k
α µ

γ
+

= + and 3 1b c E= .

Then 1 3 3a bλ = −  or ( )1 1 31R bλ = − 		             (25)

where 3
1

3

aR
b

= .

Thus when 1 1R <  the eigenvalue 1λ  is negative. Thus the prey free 
steady state is locally asymptotically stable when 1 1R <  and 2 0c Eµ + <  
which means that both eigenvalues are negative.

Model with Control

In the previous section, a model without control was formulated and 
analysed. The boundedness, positivity, equilibrium and the local stability 
were examined. In this section, a control variable is incorporated in the model 
system (5) and then analysed. The main objective is to minimize toxic which 
affect fish population and optimize cost of implementing control strategies. 
It is intended to use water hyacinth (Eichhorniacrassipes (Martius) Solms-
Laubach) ([6]) which is efficient in accumulating heavy metals such as lead, 
mercury and treat Biological and Chemical waste water [7]. Water hyacinth 
is a plant which is used to treat polluted water. It deals with biological and 
chemical wastes which are likely to affect fish population.Water hyacinth, 
in other sides, can be a problem economically as it negatively affects 
fisheries, slow or even prevent water traffic, impedes irrigation, obstructs 
water ways, reduces water supply and slows hydropower generation [8]. 
It is assumed that the application of water hyacinth to minimize toxic in 
affected fish population is at a rate of ( )tµ . The model equation (5) with 
control variable at any time t is given as

( ) 3
1 11 1dX X XYrX u X c EX

dt L k X
α γ = − − − − −  + 

( ) 2
2 21dY XY u Y Y c EY

dt k X
βα γ µ= − − − −
+

		              (26)

with initial conditions (0) 0X ≥ and (0) 0.Y ≥

To minimize the cost of applying water hyacinth and its negative effects, 
we have to formulate an optimal control problem and apply Pontryagin’s 
maximum principle to solve it.

Optimal control problem

Here it is intended to minimize the cost of applying water hyacinth, the 
amount of toxic in fish population. To address the problem, we first restrict 
the number of water hyacinth which is administered to water bodies (Ocean, 

Lake, Ponds etc.) by introducing a bound on the control as 0 , ft t t ∈    

for 0 , ft t t ∈   , and then form the objective function of the optimal control 

problem as follows:

0

21min ( )
2

ft

u t
J AY Bu t dt = + 

 ∫ 			               (27)

subject to (26) and the initial conditions. Here A is the weight associated 
with the amount of toxicant in fish population and B is the weight factor to 
control variable ( )u t , 0t is the initial time and ft is the final time.

Quadratic control in the objective function is chosen because it is required 
to minimize toxic in affected fish and cost of applying water hyacinth [9]. 
For minimizing the toxic in fish population while minimizing control cost, we 

seek to find the optimal control *u  such that
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( )( ) min ( ) ,J u J u U∗ = ∈ 				                  (28)

where 10 ≤≤ u such that 10 ≤≤ u  and 0 , ft t t ∈    is the control set [10].

Solving the optimal control problem: The Pontryagin maximum principle 
will be used to suggest the necessary optimal conditions, by forming 
Hamiltonian function H as

2
1 2

1 ( ) ,
2

dX dYH AY Bu t
dt dt

λ λ= + + + 			              (29)

Substituting (26) to (29) we get 

21 ( )
2

H AY Bu t= +

3
1 1 1(1 ) (1 )X XYrX u X c EX

L k X
αλ γ + − − − − − + 

2
2 2 2(1 ) ,XY u Y Y c EY

k X
βαλ γ µ + − − − − + 

		              (30)

where 1λ  and 2λ  are the adjoint variables or co-state variables. By applying 
Pontryagin’s maximum principle and the existence of results for optimal 
control, we obtain,

Proposition 1

For the optimal control ( )u t∗  that minimizes ( )J u over U, then there exist 

adjoint variables 1λ  and 2λ satisfying

1d H
dt X
λ ∂

= −
∂

2
1 1 1 22 2

2 3(1 )
( ) ( )

rX kY Ykr u X c E
L k X k X

α βαλ γ λ
   

= − − − − − − −   + +   

2d H
dt Y
λ ∂

= −
∂

1 2 2 22(1 )X XA u Y c E
k X k X
α βαλ λ γ µ = − + − − − − − + + 

    (31)

and with transversality conditions

1 2( ) ( ) 0f ft tλ λ= = 					                 (32)

then

( ) max{0,min(1,  )}u t u∗ = 				                (33)

So to find u , we apply optimality condition (31) to Hamiltonian to get
3 2

1 1 2 2( ) .H Bu t X Y
u

λ γ λ γ∂
= + +

∂
			                 (34)

Therefore
3 2

1 1 2 2( )( ) X Yu t
B

λ γ λ γ− +
= − 				                 (35)

From (33), then ( )u u t= . Thus the optimality condition is written as 
3 2

1 1 2 2( )( ) max 0, min 1, .X Yu t
B

λ γ λ γ∗   − + =   
   

	                               (36)

By standard control arguments as suggested by [11] and [12], we have

*
1

0  if    0,
( )  if    0 1,

1   if     1. 

u
u t u u

u

≤
= < <
 ≥

				                (37)

Numerical Simulations for the Model 
with Control
In order to illustrate some of the analytical results of the study, numerical 

simulations for the model with control are performed using a set of 
reasonable values. Table 1 shows the parameter values to be used which 
are hypothetically chosen following the realistic ecological observations 
which have been suggested by previous researchers. The initial guess for 
prey fish and predator fish are set to be 60 and 40 respectively. 

Figure 2 represents the graphical solutions for the state variables and the 
control ( )u t .

Figure 2 shows three graphs: Prey population, Predator population and the 
control u. From the graphs, it is observed that the prey population seems 
to have sharp decrease. The predator population decreases slowly to zero. 
This is because there is no toxic control in the whole population so the 
predator population may vanish. The last graph shows the control profile 
where 0u = . Because of that, the prey and predator populations seem to 
be decreasing.

Figure 3 shows the behaviour of prey predator populations with intrinsic 
growth change.

It is observed in figure 3 that, changing the prey growth rate from 0.8r =  
to 2.5r =  tends to decrease both prey population and predator population. 
With the prey population, the graph shows that the degree of decreasing 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

30

40

50

60

Time (Years)

P
r
e
y
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

Time(Years)

P
r
e
d
a
to

r
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

Time (Years)

u
*

Figure 2. Graph of prey, predator and the control with time.

Parameter Symbol Parameter value Source
r 6.5 [4]

L 300 [4]

α 0.006 [4]

k 0.2 [4]

1γ 0.00005 [4]

1c 0.03 [4]

E 1 [4]

β 0.7 [4]

2γ 0.00008 [4]

µ 0.9 [5]

2c 0.04 [4]

Table 1. Table for parameter values.
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depends on the growth rate r. It can also be seen that the predator 
population does not vary with the change of growth rate. 

Figure 4 shows the behaviour of the populations when predation growth 
rate changes.

From figure 4, it is observed that changing of predation rate from 0.78α =  to 
0.1α =  affects the predator population. The predator population decreases 

slowly when 0.1r =  as compared to when 0.78r = . It is vice versa to prey 
population, where the lower the predation, the lower the decreasing rate 
and the higher the predation rate the higher the decreasing rate.

Figure 5 shows the population behaviour when death rate of prey due to 
toxic varies.

From figure 5, it is observed that, changing prey death rate due to toxic, 
affects only the prey population. In prey population, there is a sharp decrease 
when 1 0.002γ =  which reflects the population dying in large numbers due 
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Figure 3. Prey population, predator population and control profile with r.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

30

40

50

60

Time (Years)

P
r
e
y
s

 

 
α=0.78
α=0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

Time (Years)

P
re

d
a
to

rs

 

 

α=0.78
α=0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

Time (Years)

u
*

 

 

α=0.78
α=0.1

Figure 4. Behavioural changes of prey predator populations when predation 
growth rate changes.
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rate of prey due to toxic.
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Figure 6. The effect of control on prey population.
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Figure 7. The effect of control on predator population.

to increase of toxic in the population as compared to when the death rate is
1 0.0008γ = . The predator population is not affected by changes in 1γ .

Figure 6 below shows the effect of control on prey population.

From Figure 6, it is observed that prey population decreases when there is 
no control due to toxic in water, harvesting activities and the presence of 
predator. But the same population increases rapidly and when it approaches 
the carrying capacity it remain constant.

Figure 7 shows the effect of control on predator population.

From Figure 7, it is observed that the predator population decreases 
exponentially when there is no the control. This because of the presence 
of toxic in water, natural death and harvesting activities which cause the 
population to decrease when there is no control and increasing when the 
control is applied to a system.

Summary and Conclusion

In this paper, a mathematical model for controlling toxicants in water 
was formulated and analysed to investigate the dynamical behaviour of 
the system (26). In formulating the model, harvesting efforts and terms 
which show the effect of toxicity was introduced to both prey and predator 
population (fish). Qualitative analysis was performed to the basic model (5). 
By applying stability theory of ordinary differential equations, four steady 
states were determined: trivial steady state, prey free steady state, predator 
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free steady state and interior steady state. Model simulation revealed that 
application of control strategy (water hyacinth) increases fish population. It 
is further recommended that waste water with domestic sewage industrial 
effluents, thermal and radioactive pollutants may be recycled and reused to 
generate cheaper fuel, gas and electricity.  
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