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Introduction

Density estimation is one of the most important and difficult 
statistical problems. There exists a vast literature on the topic and 
this is not the goal of the paper to provide an overview of all existing 
approaches. Mainly three methodologies have been developed: 
First, a nonparametric approach can be used, such as kernel 
density estimation, penalized maximum likelihood or spline density 
smoothing [12]. Second, finite mixture can be applied to model 
multimodal distributions [13]. Third, polynomials can be used for the 
log density modelling and estimation. The latter approach, taken in 
the present paper, is the simplest and can be used at a preliminary 
stage of density estimation.

The rationale for using polynomials of a higher order for the log 
density is as follows. First, the log density of the normal distribution 
is the polynomial of the second order. Second, since polynomials 
may have several minima and maxima of the higher order they 
can describe multimodal distributions, as does the nonparametric 
approach. Third, by testing the statistical significance of the efficients 
of the polynomial greater than two we can test the hypothesis that 
the distribution is normal.

We hypothesize that (a) the real data distribution do not have 
many components, say two or three and (b) the density function 
is fairly rounded. If so, expressing the density function through 
a polynomial of order 4 or 6 becomes justifiable. For example, a 
polynomial of the fourth order may describe a bimodal density 
pointing out to the presence of a subpopulation with outstanding 
values. As was mentioned above, the advantage of polynomial density 
is that it is parametric and therefore classic statistical hypothesis 
testing applies. For example, to test that the density is Gaussian, we 
simply test the hypothesis that the coefficients at the powers higher 
than 2 are zero; to test that the density is unimodal, we test that the 
polynomial derivative has a unique root. Especially attractive, in the 
framework of exponential polynomial fitting, is statistical hypothesis 
testing such as “Is density Gaussian or bimodal?”

Several authors, including [1] and [2] used polynomials to model 
density. Although this approach is computationally straightforward 
it may produce negative values of the density estimate. Following 
[3] and [9], we use exponential polynomials that guarantees positive
density values. An important argument in favor of modeling density
via exponential polynomial is the fact that if the order of polynomial
is 2 one obtains a normal distribution. Unlike previous authors, we do

not use penalization since we advocate a moderate polynomial order. 
Since our approach is completely parametric, we apply statistical 
hypothesis testing to chose the order of the polynomial. The goal 
of the present paper is to concentrate on computationally effective 
estimation algorithms with relevant hypothesis testing.

The structure of the papers is as follows. In the next section we 
describe a parametric model for the log density via an orthogonal 
polynomials. In section 3, we develop the Fisher Scoring algorithm 
for maximum likelihood estimation. In section 4, we illustrate density 
estimation with two examples, the rat brain oxygen distribution and 
toenail arsenic concentration in New Hampshire residents. We show 
how to statistically test that the distribution is normal.

Density Model
We model the log density distribution via a polynomial, or 

equivalently, the density f via an exponential polynomial of order K 
≥ 2 as
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where Pk(y) is a polynomial of the kth order with known coefficients,
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is the normalizing coefficient and α = (α1, ..., αK)′ is the parameter
vector (boldface is used for vectors and matrices). Note that there is 
no constant term (k > 0) because it is saturated in the normalizing 
coefficient. Thus, we assume that observations are continuously 
distributed on (-∞,∞). In a special case Pk(y) = yk; this parametrization
will be called canonical. Alternatively we may call the density model 
(1) as exponential polynomial.

Since polynomial values are highly correlated, the problem
of the coefficients estimation becomes ill-posed. To facilitate 
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computations, orthogonal polynomials have been proposed.There 
are several systems of orthogonal polynomials on the interval [0,1], 
for example. Laguerre, Legendre, or Chebyshev, that differ by the 
definition of the scalar product defined via an integral [11]. Usually, 
Hermite polynomials are used for density modeling defined on (-∞,∞) 
with the weight function 

2xe − . Importantly, coefficients of orthogonal 
polynomials from different systems are linearly dependent. For 
example, if 1( ) k j

k j jP y a y==Σ  with coefficients collected in a k × 1 
vector, a, and Hk(y) is Hermite polynomial with the k × 1vector of 
coefficients, b, then there exist a k ×k nonsingular matrix, M, such 
that b = Ma. Consequently, different polynomial systems simply 
imply different linear parametrizations of α in the density estimation 
(1).

We, however, prefer a data-based definition of polynomial 
orthogonality, namely,

1

( ) ( ) 0 ,
n

j k
i

P yi P yi for j k
=

= ≠∑

where y1, y2, ..., yn are observations. In fact, we expect that 
the data-based orthogonality would be more efficient because 
statistical computations are carried out on the sample values,not 
in the functional space defined on (-∞,∞) as is assumed for Hermite 
polynomials. Databased orthogonal polynomials are readily available 
in popular statistical packages such as S-Plus (function poly).

Exponential polynomial density estimation (1) leads to a nonlinear 
statistical problem that involves integration (2). When K > 2, there is 
no explicit formula for c(α) and numerical integration is required–this 
is the major technical problem in estimating parameters of density 
(1).

Maximum Likelihood Estimation
If {yi, i = 1, 2, ..., n} are iid observations from f, the log-likelihood 

function takes the form
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In this section, we assume that K is an even known number and 
αK> 0. These conditions imply that the integral (2) exists. In fact,
positiveness and statistical significance of the 'K Sα  estimate may be a 
guideline for choosing an appropriate K.

Without loss of generality one can assume that observations 
are ascending, namely, y1 ≤y2 ≤ ... ≤ yn. There exists no closed
form solution of the integral (2) for K > 2, so we apply numerical 
integration. Generally, the integral ∞

−∞∫  G(y)dy is approximated with
a sum,
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where wq are the weights and {zq, q = 1, 2, ...,Q} is the sample of the 
argument in the range where the integrand value is not negligible. The 
easiest way to derive the weights is to take observations themselves 
as the sample for numerical integration, we refer to this algorithm as 
the y-value method. Then, from the trapezoid rule, we obtain

 1, , 1,..., 1.q q q q qz y w y y q Q n+= = − = = −   (4)

Another way to obtain the sample of z-values is to take equidistant 
values within the interval (min y − K(max y − min y), max y + K(max 
y − min y)), where K can be chosen 1/2 or 1/3 to cover the range 

of possible y-values. Finally, Gauss-Hermite quadrature [5] applies 
with 

2
ˆ ˆ2 , 2 ,qx

q q k kz y x w w eσ σ= + =  where xq and ωk are Gauss-
Hermite nodes and weights (these values can be computed using a 
C-code gauher [11]).

As a word of caution, numerical integration is a difficult
computational problem especially if the integrand function is not 
unimodal. Although numerical integration may be a building procedure 
of commercial software we should use it carefully because typically 
no error analysis is supplied [4]. Also the reader should be aware 
that integral approximation may not guarantee the desired accuracy 
unless an analytical investigation of the integrand and its derivatives 
is carried out, especially when the integration domain is (-∞,∞). A 
good practice is to reestimate the density with different integration 
parameters to see whether estimation results are negligibly different. 
In other words, the sensitivity of estimation results to the choice of Q, 
zq, and ωq should be addressed in applications. Using approximation 
(3), we minimize the negative log likelihood function,
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The MLE solves equations 0,jF α∂ ∂ =  j = 1, ...,K. The elements 
(7) constitute the K×K Hessian matrix H. We prove that this matrix
is positive definite. Before that, we rewrite the gradient and the
Hessian in matrix form. Let y be the K × 1 vector with components

1 ( )n
i j iP y=Σ  , Z be the Q ×K matrix with elements Zqj = Pj(zq) and p be 

the Q × 1 vector with components pq. Then the gradient g, defined 
by (6) and the Hessian H, defined by (7), are written as 

2
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where D = diag(p).

We prove that H is a positive-definite matrix. Let u be any nonzero 
K × 1 vector, then u′Hu is proportional to v′Dv×(p′1Q)−(v′p)2, where v
= Z′u. Rewriting this in coordinate form, we have 

2
2

1 1 1
0,

K K K

j j j j j
j j j

p p pυ υ
= = =

    
    − ≥
    
    
∑ ∑ ∑

as follows from the Cauchy inequality expressing vjpj = vj 
p

 
p . The 

equality holds if and only if vj 
p

 = λ p
 , i.e., if vj = const. But Z′u =

const would mean that the polynomial of the Kth order has Q roots 
which is impossible. Thus, the Hessian H is positive definite if K < Q. 
Consequently, the maximum likelihood estimate is unique because 
(5) is a strictly convex function. The Hessian, H, is also the Fisher
information matrix because H is not random. The inverse, H−1 is the
asymptotic covariance matrix of ˆMLα , which is used for hypothesis
testing. The MLE is found iteratively by the Fisher Scoring algorithm,

j j

j j
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where s = 0, 1, ... is the iteration index and the right-hand side is 
evaluated at α = as. As the iterations go on, the gradient ||gs|| should
vanish.

A good test for numerical quadrature is to run the algorithm with 
K = 2 and to compare the solution to the exact one. Indeed if K = 
2, we obtain the normal distribution with the negative log-likelihood 
value 0.5n ( )2ˆln 2 1πσ +  

 , where ( )22 1
1ˆ n

i in y yσ −
== Σ − . This test

may serve as a guide for choosing the right number of nodes. 

Initial estimate 

To start iterations (8), one has to have an initial guess for the 
vector of coefficients, a0. The choice of the initial estimate is 
important because the closer a0 is to the MLE the faster iterations. 
We suggest the following procedure: Build a histogram with a chosen 
number of bins, L > K at locations {yl, l = 1, 2, ...,L} and fit −ln pl with 
{Pk(yl), k = 1, ...,K} using linear least squares, namely, minimizing 

2
0 1 1 2 2

1
( ln ( ) ( ) ... ( ))

L

l l l K K l
l

p P y P y P yα α α α
=

− − − − − −∑ (9)

The least squares estimate yields the initial vector a0= ( 1 Kˆ ˆ ..., α α )’. Several 
tries with different numbers of bins may be required to obtain 
satisfactory estimates, meaning that the coefficient at the highest 
order polynomial is positive and statistically significant. This 
procedure may help in determining the right polynomial degree via 
statistical significance testing of its coefficients.

Examples
We illustrate our approach with two examples. The first 

example has a moderate sample size, n = 270, with evident bimodal 
distribution, while in the second example, the sample size is fairly 
large, n = 1057, with a seemingly lognormal distribution. We use 
the statistical hypothesis approach to test normality and bimodality.

Rat brain oxygen distribution 

We use the data from [10] on the rat brain PtO2 measured with an 
Eppendorf polarographic electrode device. Knowing the distribution 
of oxygen in brain is a fundamental biological problem especially in 
connection with ischemia and lack of oxygen during stroke [7]. The 
histogram with 25 bins and three methods of density estimation using 
an exponential polynomial of the sixth order and the Gaussian kernel 
density is presented in Figure 1. We use the S-Plus built-in function 
density with the default bandwidth for the density estimation with 
Gaussian kernel. The bimodality of the brain oxygen distribution 
is visually obvious.All methods produce somewhat close density 
curves. The results of estimation are presented in Table 1 (SE are 
shown below in parentheses). Initial estimation uses linear fit of the 
sixth degree polynomial to the log frequency values by least squares 
(9). The nodes in y-value method are the observations themselves 
and G-H (21) refers to Gauss-Hermite numerical quadrature with 21 
nodes. We test the quality of numerical quadrature by running the 
algorithms with K = 2. For the y-value method, the minimum F value 
(5) is 1019.52, while for the Gauss-Hermite numerical quadrature
with 21 nodes, the value coincides with the exact one, 1033.53. Thus,
we infer that the Gauss-Hermite numerical quadrature with 21 nodes
yields a precise integral approximation.

Now we describe the estimation of the standard errors of mode 
and stable points. Let the vector of coefficients of the polynomial 

of the K th order be β̂  with covariance matrix C = H−1. Since modes 
and stable points are the roots of the polynomial 1

1
ˆK k

k k kyβ −
=Σ  we

can estimate the variance of the root y* with the delta method, 
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ˆ ˆ
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polynomial coefficients is calculated through the derivation of the 
implicit function, namely 

1 1
1* *

1 2
1 2 *

ˆ ˆ( )
.

ˆ ˆ ˆ( ) ( 1)

K k k
k k k
K k K k

k k k y k k

kyy ky

ky k k y

β β
β β β

− −
=

− −
= =

∂ Σ ∂∂
= − = −

∂ ∂ Σ ∂ Σ −          (10)

The bimodality discovered has an important biological 
interpretation as an oxygen concentration in capillaries/blood vessels 
and brain matter. The saddle point may be used to discriminate 
PtO2 values of highly and normally oxygenated parts of the brain. 
As follows from our density estimation, the oxygen oncentration in 
brain matter is half that of the blood vessels with the dividing value 
(saddle point value) at about 37 mm Hg.

Although bimodality and consequently abnormality is visually 
obvious, we need a statistical support by hypothesis testing. Testing 
normality is equivalent to testing the null hypothesis H0 : α3 = α4 =

Figure 2: Distribution of toenail srsenic on the log scale. The distribution of  New 
Hampshire residents with elevated arsenic starts at 0.68 mg/1.

Figure 1: Histogram with 25 bins and four methods for density estimation.
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α5 = α6 = 0. We test this hypothesis using the Wald and likelihood
ratio test (ML Gauss-Hermite quadrature with 21 nodes is used in the 
following computations). Let C* denote a 4×4 covariance matrix of 

* 3 4 5 6ˆ ˆ ˆ ˆ ˆ( , , , ) 'α α α α α=  as a sub matrix of the inverse to the Hessian, 
H−1. Then, using the Wald test, we have ' 1 2ˆ ˆ (4)Cα α χ−

* * *  , which gives
the value 26 with the p-value less than 0.0001. For the likelihood 
ratio test, we compute 2(F2,min − F6,min), where F2,min and F6,min are 
minimal values of (5) with K = 2and K = 6 respectively, which has 
χ2(4) distribution. This test gives 2(F2,min −F6,min) = 37with the p-value
less that 0.0001. Thus, both tests confirm that the distribution of 
brain oxygen is not normal.

The advantage of the polynomial density estimation is obvious 
because it allows statistical hypothesis testing while the traditional 
kernel density estimation is used merely as the exploratory analysis. 
The former method of density estimation enables identifying the 
presence of two parts of the brain with statistically different levels of 
oxygen concentration.

Bump hunting: arsenic toenail distribution 

Arsenic belongs to a group of toxic metals and may cause cancer. 
In particular, several papers relate the elevated concentration of 
arsenic in drinking water to bladder cancer by measuring the toenail 
arsenic concentration. Knowing the distribution of toenail arsenic is 
very important. For example, this distribution may help policy making 
to determine the threshold in the level of concentration above which 
the exposure to arsenic becomes dangerous for health. We hunt 
bumps at the right tail distribution [6].

Here we use data on toenail arsenic concentration in New 
Hampshire residents described in [8]. The histogram of the toenail 
arsenic distribution based on n = 1057 residents is 9 presented in 
Figure 2. The distribution is fairly close to lognormal. We show three 
density curves: normal, a nonparametric estimate with Gaussian 
kernel, and an exponential polynomial of the 10th degree. The latter 
density identifies a bump at right. Solving the polynomial equation 
of the ninth order, we find that the saddle point/threshold is −0.38. 
Using the delta-method with derivatives computed by formulas (10), 
we estimate the standard error of the threshold as 0.032.

Summing up, a group of New Hampshire residents have an 
elevated arsenic toenail concentration, which starts from 0.68 ml/l. 
Approximately 0.76% of population have an arsenic concentration 
that is dangerous for health. Having that threshold one may identify 
the area of the state where the concentration of arsenic is above the 
limit.

Discussion
Modeling the log density via orthogonal polynomials can be viewed 

as an alternative to the gold standard kernel density estimation. The 
choice of the kernel, such as triangle or Gaussian, is less important 
but the choice of the bandwidth is critical: If the bandwidth is wide 
the density looks like normal if the bandwidth is narrow the density 
is jagged. Although some methods of the bandwidth selection, like 
cross-validation, have been suggested in the literature they are ad-hoc 
in nature, and merely used for exploratory distribution analysis. The 
adventure of the polynomial density estimation is that it is model-
based and therefore the classic statistical hypothesis testing applies. 
Consequently, we may rigorously answer the questions whether the 
distribution is normal or whether the discovered density bump is 
statistically significant. The log density estimation with orthogonal 
polynomials can be easily realized in modern statistical packages, 
such as S-Plus or R.
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m#1 m#2 s.p.

Initial (25)
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G-H (21)
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Table 1: Estimation results for rat brain PtO2 density estimation.

Note: m#1 – the left density peak/mode, m#2 = the right peak/mode, s.p. = saddle point
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