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Abstract
Time series modeling and forecasting has ultimate importance in various practical domains in the world. Many significant models have been 
proposed to improve the accuracy of their prediction. Global warming has been a big challenge to the world in affecting the normality of the day 
to day economic and non-economic activities. It causes far-reaching weather changes, which are characterized by precipitation or temperature 
fluctuations. Rainfall prediction is one of the most important and challenging tasks in the recent today’s world. In Kenya unstable weather patterns 
which are associated with global warming have been experienced to a greater extent. The objective of this study was to modeled rainfall patterns 
in Kenya by use of Bayesian Vector Autoregressive (BVAR). To achieve this objective, the data was first statistically diagnosed using Augmented 
Dicker Fuller and Granger Causality test. The BVAR model was developed using multiple regression analysis in a system of equations. The 
model sensitivity was performed using confusion matrix and the F-test was used to compare the variances of the actual and forecasted rainfall 
values. After the first differencing the data was found to be stationary where Augmented Dicker Fuller (ADF) test was statistically significant 
with P-values <0.05. The Granger Causality test found that; temperature, atmospheric pressure, wind speed and relative humidity influenced 
the rainfall time series models in all the regions. The model sensitivity was performed using confusion matrix. The BVAR model developed was 
statistically significant (R2=0.9896). The sensitivity of the model was 82.22%, making it appropriate for forecasting. In conclusion the Bayesian 
Vector Autoregressive model developed is suitable and sensitive for forecasting rainfall patterns.
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Introduction

The world is currently generating large datasets in various fields. The 
amount of data produced and recorded has grown enormously in virtually 
all fields which include, biomedical, social network, mobile network data, 
digital archives, electronic trading and weather recording among others. This 
unanticipated amount of data provides unique opportunities for data-driven 
decision making and knowledge discovery. However, the massive sample 
size and high dimensionality of big data introduces unique computational and 
statistical challenges, which includes scalability and storage capacity, noise 
accumulation, spurious correlation, incidental endogeneity and measurement 
errors. In addition, the task of analyzing such large-scale data set comes with 
momentous challenges and calls for innovative statistical methods designed 
specifically for faster speed, higher efficiency and accuracy. These challenges 
are eminent and require new computational and statistical paradigm shift. In 
spite of the explosion of this big data, specific tools are required for modelling, 
mining, visualizing, predicting and understanding these large data sets. In 
many situations, it is easy to predict the outcome given the cause. However, 
in science more often than not, researchers are faced with the question: when 
given the outcome of an experiment, what are the causes or the probability 
of the causes compared to other outcomes? This may best be addressed 
using Bayesian theory which offers a framework for plausible reasoning 
and a concept which is more powerful and general tool for handling this 

problem. To apply Bayesian, data is partition into training and testing sets, 
where training set is used to develop a model and testing set is for checking 
the effectiveness of the developed model. This idea of Bayesian theory was 
championed by Jaynes ET [1]. There had been a growing interest and need 
in applying big data to many analytical and modelling areas, particularly in 
time series prediction. The primary model in Multivariate time series analysis 
is the Vector Autoregressive (VAR). It is the mechanism that is used to link 
multiple time series variables together. In VAR models, each variable is a 
linear function of the past values of itself and the past values of all the other 
variables. It is usually used in simultaneous prediction and structural analysis 
of a number of temporals observed variables. It is applied when each variable 
in the system does not only depend on its own lag alone, but also on the lags 
of other variables. The high- dimensional data set in time series has become 
common in many areas like in geo-physics, biomedical, econometrics and 
finance among others. Most of the variables used are correlated and need 
to be interrelated to give information about a response variable. This cross-
sectional dependency of variables brings a sharp focus on the problem on 
how to uniquely understand the interactions among the components of a 
large dynamic system from the data set. VAR is commonly used for studying 
high dimensional interrelationships among the components of a multivariate 
time series, and BVAR was used to treats the VAR parameters as random 
variables. This study helps to integrate interdependent variables to develop 
computational efficient model for VAR predictions using Bayesian model. One 
of the actively researched areas is the weather distribution pattern, about 
which the understanding is still in its early stages of inferences and robust 
models are still required.

Purpose of the Study

Kenya has experienced both prolonged droughts or intense flooding 
every year [2]. Due to the increase in such extreme weather occurrences, the 
glaciers around Mount Kenya have disappeared, leading to the drying up of 
rivers and streams. These weather changes have led to harvest losses and 
food shortages, as well as landslides, soil degradation and loss of biodiversity 
among other climatical and economic effects [3]. The diminishing water 
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sources and erratic rainfalls have also reduced the availability of water. Climate 
variability and changes have adversely affected economic and non-economic 
sector in which this situation is expected to worsen in the future if drastic 
measures are not taken. Presently, weather forecast is solved through the 
help of numerical Atmospheric Circulation Models (ACMs) and other traditional 
prediction methods, of which it has not solved the erratic weather situation in 
Kenya. The purpose of this study was to model the rainfall pattern in Kenya 
using Bayesian Vector Autoregressive and help make appropriate predictions.

Literature Review

The origin of Autoregressive modeling of multivariate stationary processes 
was in control theory, where canonical tools for identification of linear dynamic 
systems were Vector-valued Autoregressive Moving Average (VARMA) and 
state-space representations [4]. According to Lütkepohl H [5], he advocated 
for the use of higher-order VAR over more general VARMA models due to 
numerous identification issues of the latter model class. Another person who 
gave a strong theoretical justification of such a modeling strategy which came 
from the famous Wald Decomposition Theorem was [6] which ensured that 
a large class of stationary processes could be represented as potentially 
infinite order VAR processes. A major function and common application of 
VAR models is prediction. VAR-based forecasts have proven to be superior 
to many other methods [7]. In many situations, analyzing a time-series in 
isolation is reasonable; while in other cases univariate analysis are limited, 
this was clearly demonstrated by Campbell SD and Diebold FX [8]. One 
disadvantage of VAR models is that they require time series to have equal 
lengths in estimation process [11]. This requirement includes a loss of 
potentially valuable information coming from time series that are longer than 
others. Bayesian models are different from the classical estimation method. 
The basic idea of the Bayesian estimation method is to treat the parameters 
of the model to be estimated as random variables which follow a certain 
distribution. It is also required to give a prior distribution of the parameters 
to be estimated based on experiences and combine it with the sample 
information. Bayes’ theorem is used to calculate the posterior distribution of 
the parameter to be estimated, thereby obtaining the estimated values with 
the estimated parameter. Bayesian methods are currently experiencing an 
increased popularity in the Sciences as a means of probabilistic inference [9]. 
Among their advantages are the ability to include prior information, the ease 
of incorporation into a formal decision analytic context, the explicit handling 
of uncertainty and the straightforward ability to assimilate new information. 
Bayesian methods are also able to deal with Computational complications 
arising from the constraints to the positive orthant are avoided through the 
formulation of a slice sampler on the parameter-extended unconstrained 
version of the model, [10]. The Bayesian approach has shown to be particularly 
useful for ecological models with poor parameter identifiability, [11]. The most 
general time series models have been Box-Jenkins model which assumed that 
the time series is stationary. There are three stages in developing Box-Jenkin 
time series model; these are model identification, model estimation and model 
validation. The problem with Box – Jenkins model is that, for effective fitting of 
the model it requires at least a moderately long series. The, Yang D, et al. [12] 
recommended at least fifty observations, while many others recommended 
at least hundred observations. This problem was sorted by use of Bayesian 
inferences. The parameters within Bayesian models are stochastic and 
assigned appropriate probability distributions, [13]. The parameters are 
treated as random variables and probabilities assigned to these parameters. 
Bayesian analysis has three components namely; the prior distribution, the 
likelihood and the posterior distribution. It improves on classical estimations 
in terms of precision of estimators. The posterior distribution describes the 
behavior of the parameters after the data is observed and prior assumptions 
are made. Some recent papers have considered extensions for large BVARs. 
For example, Koop G and Korobilis D [14] proposed an approximate method 
for forecasting using large time-varying parameter BVARs. According to Chan 
JCC and Eisenstat E [15], he estimated Bayesian VARMA containing 12 
variables, which he termed to have many variables. A fast process in economic 
to estimate a large BVAR with a common stochastic volatility was proposed 
by Carriero A, et al. [16]. These extensions were all found to be outperformed 

by BVARs with homoscedastic and independent innovations mostly in 
econometric areas. VARs tend to have a lot of parameters while Bayesian 
methods that incorporates prior information to provide shrinkage were often 
found to greatly improve forecast performance [17].

Methodology

The source of the data was secondary data, which was obtained from 
Trans- African Hydro-Meteorological Observatory (TAHMO) and Kenya 
Meteorological stations. To remove scaling, normalization was done through 
liner scaling technique. It was essential because all the variables used 
different units of measurements. Also, a variable may have a large impact on 
the prediction variable only because of its numerical scale or due to its unit 
of measurement. The technique of linear scaling which is also referred to as 
min-max normalization estimations, applied a formula that was stated as xval.

( )
( ) ( )
dat val

obt
val val

x Min x
x

Max x Min x
−

=
−

Where; xdat is the value to be normalized, Min(xval) the minimum value, 
Max(xval) the maximum value, xval the value obtained after normalization. 
Normalization transformed the data into a common range of between 0 
and 1. Thus removing the scaling effects from all the variables. The Vector 
Autoregressive model (VAR) constitute of a multivariate time series which 
is applied to examine the dynamic interrelationship between stationary time 
series variables. VAR model is an extension of univariate to multivariate time 
series data. It is a multi-system of equations where all the variables are treated 
as endogenous. Model selection is an integral part of the statistical analysis of 
VAR models. It is made up of two parts; determination of the lag orders also 
known as the lag length and the determination of the structures of the VAR 
coefficient matrices.

The study considered a column vector of k-different variables xt=[x1t,x2t,…
,xkt ]' and modeled them in terms of past values of the vector. The result was a 
Vector Autoregressive of order p or a VAR (p) process which was of the form 

1 1 ...t t p t p tx B x B x eα − −= + + + +

Where, xt is a k × 1 vector stochastic process α is a k × 1 vector of intercept 
parameters, B1 through Bp are k × k matrices of coefficients, et is a k × 1 vector 
of white noise process and P is the lag order. 

The study considered these two assumptions

i)	

ii)	

The covariance matrix was also assumed to be a finite positive definite 
matrix. To develop the coefficient matrix, the lag operators (∆) method was 
used. The VAR (p) process was written in lag operator notation, the lag ∆ 
operator was defined in away such that ∆xt=x(t-1), that is, it lags (shifts back) the 
index by one period. Using this lag operator (∆), the equation 

1 1 ...t t p t p tx B x B x eα − −= + + + +

was written as

( )2
1 2 ... p

t p t tx B B B x eα= + ∆ + ∆ + + ∆ +

Or

( ) t tB x eα∆ = +

Where

( ) 2
1 2 ... p

k pB I B B B∆ = − ∆ − ∆ − − ∆
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The study considered the model of the form

1 1 1 1 1 1 6 1 1... ... ........ ...t t p t p t p t p p t p t p ty B y B Y x x k x k x eα α α− − − − − −= + + + + + + + + + +

In this study, the following equation formation was considered;
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The above form represents the model in matrix form

Where " "itx represented the endogenous variable, which were independent 
at time period “t” for a specific zone “i”. ite  represented the white noise error 
terms and ijB  were the vector matrix of the coefficient. Where i, j = 0,1 …….6. 
In reduced form, the right-hand side of each equation included lagged values 
of all dependent variables in the system, no contemporaneous variables. 

The Bayesian model considers the VAR as follows, Let tx  be an n x 1 
random vector that takes values in the domain of real numbers. The evolution 
of tx the endogenous variable is described by a system of p-th order difference 
equations in the VAR(p): 

1 1 ...t t p t p tx B x B x eα − −= + + + +

The vector of stochastic innovation, te  an independent and identically 
distributed random variable for each t was the distribution from which te  was 
drawn, which determined the distribution of tx conditional on its past value

{ }1 : 0 2,... ..., ,... ... ... ,p t t p t tx x x x x− − −=

The standard assumption was that errors were Gaussian.

( )~ . 0,te iid N Σ

This implies that the conditional distribution of tx  was also Normal. 
Bayesian inference on the tx model amount to updating prior beliefs about the 
VAR parameters that are seen as stochastic variables, after having observed 
a sample.

{ }0 2 1,... ... , ,... ... ... ,t t p t tx x x x x− − −=

Prior beliefs about the VAR coefficients were summarized by a probability 
density function and updated using Bayes’ Law.

( )
( ) ( )

( ) ( )1 :
1 :

1 :

, / ,
, / / ,p t

t p t
p t

pr A pr x A
pr A x pr x A

pr x
α−

−
−

Σ Σ
Σ = Σ

Define as a k x n matrix, with k = n x p +1. The joint posterior distribution of 
the BVAR(p) coefficients pr(A, Σ) summarized the initial information about the 
model parameters and the sample information is the likelihood function. The 
posterior distribution summarizes the entire information available and is used 
to conduct inference on the BVAR parameters.

Under the assumption of Gaussian errors, the conditional likelihood of the 
BVAR was

( ) ( )
( ) ( )

1 :0

1 1
1 t t1/2

1

1 1/ , , exp 'x' ' 'x
22p

T

T t t
t

pr x A x x A x A
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− −
−

−

 Σ = Σ − − Σ − 
 

∏

Where t t 1 t p' ' ... ... ... ... ... 'x x x− − =  
The likelihood in this equation was written in compact form, by using the 

seemingly unrelated regression representation of the BVAR.
t tx Ax e= +

Using this notation and standard properties of the trace operator, the 
conditional likelihood function was equivalently expressed as

( )
( )

( ) ( )1 1
1 1 :0 1/2

1 1 1/ A, , exp exp 1 ' '
2 22T ppr x x tr X tr A Â x x A Â

π
− −

− −
    Σ = Σ − Σ − Σ − − −        

Where Â was the maximum likelihood estimator (MLE) 
of A and Ŝ the matrix of sums of squared residuals that was 

( 1)( )ˆ ˆ ˆ ', ( ) ( )ˆ
t t tA x x x x S x xA x xA−′ ′= = − −

The likelihood was written in terms of the vectorized representation of the VAR

Where xt = vec(xt) and e = vec(e) were Tn x 1 vectors, and ∝ =vec(A) was 
nk x1. In this vectorized notation the likelihood function was written as

 ( )
( )

 ( ) ( )( )/1 '1 1
1: 1 :0 /2

1 1 1/ ,Σ,    Σ exp{ [Σ ] }  Σ
2 22

ˆ ˆT
T p Tnpr x A x tr S X exp x x

π
− − −

−
 = − − ∝ − ∝ ⊗ ∝ −∝


′ 


Where consistently, ∝̂ =vec( Â ) was nk x 1. The likelihood function was 
used to update the prior information regarding the BVAR parameters.

Findings

Having confirmed the Stationarity of the data, as well as the Granger 
Causality test for all the regions, the model development was readily 
formulated. This involved lag setting, obtaining the model coefficient and 
testing their significance.

Lag order selection 

When using a BVAR-model it is important to use the correct number of 
lags. This was done through lag selection criteria of AIC, HQ, SC and FPE. 

Lag order selection for zone one: In zone one the lag order was 3 as 
shown in Table 1.

Model coefficient for zone one

The estimations of BVAR coefficient were analyzed by use of Multiple 
Least Square method, which gave the following results. Zone one model had 
the following variables, x.l1, x1.l1, x3.l1, x4.l1, x6.l1, x.l2, x1.l2, x3.l2, x4.l2, 
x6.l2, x.l3, x1.l3, x3.l3, x4.l3 and x6.l3 with a constant. As indicated in Table 
2 the findings showed variable x.l1 had t value of -9.303 and the Pr(>|t|) of 
3.07e-06 *** variable x1.l1 had t value of -4.527 and the Pr(>|t|) of 0.001097 
**Variable x3.l1 had t value of -4.217 and the Pr(>|t|) of 0.001781 **. Variable 
x4.l1 had t value of -12.79 and the Pr(>|t|) of 1.59e-07 *** while Variable x6.l2 
had t value of -5.368 and the Pr(>|t|) of 4.00e-04 ***. Variable x1.l2 had t value 
of -2.479 and the Pr(>|t|) of 0.032598 * Variable x1.l2 had t value of -3.777 and 
the p-value of 0.003621 ** Variable x3.l2 had t value of -4.848 and the Pr(>|t|) 
of 0.000673 ***. While x4.l2 had t-value 0.462 and the p-value of 0.007417 *** 
while, x6.l2 had t value of 1.839 and the Pr(>|t|) of 0.012372 *. As indicated in 
Table 3 the findings showed variable x.l3 had t value of 4.905 and the Pr(>|t|) 
of 0.001755 ** variable x1.l3 had t value of -4.792 and the Pr(>|t|) of 0.000215 
*** Variable x3.l3 had t value of 3.535 and the Pr(>|t|) of 4.31e-06 ***. Variable 
x4.l3 had t value of 2.263 and the Pr(>|t|) of 0.002771 ** while Variable x6.l3 
had t value of 0.036 and the Pr(>|t|) of 0.009524 ** and the constant had at 
value of 0.264 and the Pr(>|t|) of 0.007147 *** . 

The zone one model: x = 0.056 - 0.087x.l1 - 0.142x1.l1 + 0.187x3.l1 
- 1.08x4.l1 + 0.072x6.l1 -0.108x.l2 - 0.101x1.l2 +0.37x3.l2 + 0.0165x4.l2 + 
0.39x6.l2 +0.44x.l3 +0.14x1.l3 +0.45x3.l3 + 0.39x4.l3 +0.0415x6.l3.

Zone one model coefficient testing: Residual standard error: 4.463 
on 20 degrees of freedom. Multiple R-Squared: 0.9896, Adjusted R-squared: 
0.9823, F-statistic: 136.1 on 17 and 20 DF, p-value: 4.161e-09

Table 1. Lag order zone one.

AIC(n) HQ(n) SC(n) FPE(n)
3 3 3 3
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The coefficients were highly significant including the constant. The model 
had also a great fit, as the adjusted R2 was 0.9823, meaning that 98.23% of 
a change in the response variable were explained by the regression model. 

Lag order selection for zone two: In zone two the lag order was 3 as 
shown in Tables 2 and 3.

Model coefficient for zone two

Zone two model had the following variables: x.l1, x1.l1, x3.l1, x4.l1, 
x6.l1, x.l2, x1.l2, x3.l2, x4.l2, x6.l2, x.l3 x1.l3, x3.l3, x4.l3 and x6.l3 with a 
constant. As indicated in Table 4 the findings showed variable x.l1 had t value of 
14.477 and the Pr(>|t|) of 8.13e-10 ***, variable x1.l1 had t value of -16.516 and 
the Pr(>|t|) of 1.42e-10 ***Variable x3.l1 had t value of 7.120 and the Pr(>|t|) 
of 5.17e-06 ***. Variable x4.l1 had t value of 10.751 and the Pr(>|t|) of 3.78e-
08 ***while Variable x6.l2 had t value of 3.031and the Pr(>|t|) of 0.008986 **. 
Variable x1.l2 had t value of 7.290 and the Pr(>|t|) of 3.97e-06 ***, Variable 
x1.l2 had t value of -7.813 and the p-value of 4.83e-05 *** Variable x3.l2 had t 
value of 5.773 and the Pr(>|t|) of 4.83e-05 *** while x4.l2 had t-value 6.099 and 
the p-value of 2.75e-05 *** while, x6.l2 had t value of 1.839 and the Pr(>|t|) of 
0.087237. As indicated in Table 4 the findings showed variable x.l3 had t value 
of 3.905 and the Pr(>|t|) of 0.001585 ** variable x1.l3 had t value of -4.927 and 
the Pr(>|t|) of 0.000223 *** Variable x3.l3 had t value of 5.530 and the Pr(>|t|) 
of 7.41e-05 ***. Variable x4.l3 had t value of 3.623 and the Pr(>|t|) of 0.002771 
** while Variable x6.l3 had t value of 0.063 and the Pr(>|t|) of 0.950286 and the 
constant had at value of 0.291 and the Pr(>|t|) of 0.775018. 

The zone two model: x = 0.037 + 0.571x.l1 -2.01 x1.l1 +0.727 x3.l1 + 
0.922x4.l1 + 0.326 x6.l1 +0.856 x.l2 -1.47 x1.l2 + 0.945 x3.l2 + 0.954 x4.l2 
+ 0.292 x6.l2 +0.294 x.l3 - 0.418 x1.l3 + 0.449 x3.l3 + 0.286 x4.l3 + 0.00414 
x6.l3.

Zone two model coefficient testing: Residual standard error: 0.6973 
on 28 degrees of freedom. Multiple R-Squared: 0.9995, Adjusted R-squared: 
0.9961, F-statistic: 1919 on 25 and 28 DF, p-value: < 2.2e-16.

The BVAR model was able to confirm that the response variable was 
affected by both its own lagged values and the lagged values of the predictor 
variables. These coefficients were all highly significant. The model also had a 
good fit, as the adjusted R2 was 0.9961, meaning that 99.61% of the change 
in the response variable was explained by this regression model. It is also 
worth mentioning that the trend coefficients were highly significant including 
the constant (intercept) (Table 5).

Lag order selection for Global vector

Global region models had the following variables: x.l1, x1.l1, x3.l1, 
x4.l1, x6.l1, x.l2, x1.l2, x3.l2, x4.l2, x6.l2, x.l3, x3.l3, x3.l3, x4.l3 and x6.l3 with 
a constant 9. As indicated in Table 6, the findings showed variable x.l1 had t 

Table 3. Lag order zone two.

AIC(n) HQ(n) SC(n) FPE(n)
3 3 3 3

Table 4. Zone two model coefficient.

Variables Estimate Std. Error t value Pr(>|t|)
x.l1 0.57135 0.03947 14.477 8.13e-10 ***
x1.l1 -2.0109 0.12175 -16.52 1.42e-10 ***
x3.l1 0.72686 0.10209 7.12 5.17e-06 ***
x4.l1 0.92207 0.08577 10.751 3.78e-08 ***
x6.l1 0.32639 0.10769 3.031 0.008986 **
x.l2 0.85648 0.11749 7.29 3.97e-06 ***
x1.l2 -1.4706 0.18822 -7.813 1.80e-06 ***
x3.l2 0.94533 0.16376 5.773 4.83e-05 ***
x4.l2 0.95473 0.15654 6.099 2.75e-05 ***
x6.l2 0.29238 0.159 1.839 0.087237.
x.l3 0.29352 0.07515 3.905 0.001585 **
x1.l3 -0.4178 0.08478 -4.927 0.000223 ***
x3.l3 0.44999 0.08137 5.53 7.41e-05 ***
x4.l3 0.28647 0.07908 3.623 0.002771 **
x6.l3 0.00415 0.06538 0.063 0.0095024 **
const 0.03735 0.12818 0.291 0.0017508 ***

Table 5. Lag order selection.

AIC(n)) HQ(n) SC(n) FPE(n)
3 3 3 3

Table 6. Global model coefficient.

Variables Estimate Std. Error t value Pr(>|t|)
x.l1 -1.31387 0.13867 -9.475 1.26e-06 ***

x1.l1 0.69994 0.10293 6.8 2.95e-05 ***
x3.l1 -2.68024 0.24603 -10.894 3.12e-07 ***
x4.l1 -4.14922 0.04883 -8.497 3.67e-06 ***
x6.l1 1.88787 0.23913 7.895 7.41e-06 ***
x.l2 -1.07847 0.20245 -5.327 0.000242 ***

x1.l2 0.55664 0.18559 2.999 0.012095 *
x3.l2 -3.11604 0.28575 -10.905 3.09e-07 ***
x4.l2 -4.83226 0.07282 -6.636 3.68e-05 ***
x6.l2 3.66172 0.0421 8.698 2.92e-06 ***
x.l3 -0.66616 0.12831 -5.192 0.000298 ***

x1.l3 0.38099 0.09545 3.991 0.002117 **
x3.l3 -1.17905 0.13707 -8.602 3.26e-06 ***
x4.l3 -1.0106 0.30184 -3.174 0.008863 **
x6.l3 1.92924 0.23391 8.248 4.88e-06 ***
const -0.05123 0.14477 -0.045 0.000156 ***

Table 2. Zone one model coefficient.

Variables Estimate Std. Error t value Pr(>|t|)
x.l1 -0.087072 0.00936 -9.303 3.07e-06 ***
x1.l1 -0.142341 0.031443 -4.527 0.001097 **
x3.l1 -0.187338 0.044428 -4.217 0.001781 **
x4.l1 -1.082147 0.084548 -12.79 1.59e-07 ***
x6.l1 0.071938 0.008197 -5.368 4.00e-04 ***
x.l2 -0.10808 0.040665 -2.479 0.032598 *

x1.l2 -0.101519 0.02688 -3.777 0.003621 **
x3.l2 0.370303 0.076375 -4.848 0.000673 ***
x4.l2 0.0165 0.260521 0.462 0.007417 ***
x6.l2 0.392382 0.0915 1.839 0.012372 *
x.l3 0.43523 0.05175 4.905 0.001755 **
x1.l3 0.141775 0.08784 -4.792 0.000215 ***
x3.l3 0.44951 0.08137 3.535 4.31e-06 ***
x4.l3 0.38672 0.07908 2.263 0.002771 **
x6.l3 0.0415 0.0165 0.036 0.009524 **
const 0.0561 0.212506 0.264 0.007147 ***

value of -9.475 and the Pr(>|t|) of 1.26e-06 *** variable x1.l1 had t value of 
6.800 and the Pr(>|t|) of 2.95e-05 ***,Variable x3.l1 had t value of -10.894 and 
the Pr(>|t|) of 3.12e-07 ***, Variable x4.l1 had t value of -8.497 and the Pr(>|t|) 
of 3.67e-06 ***, Variable x6.l1 had t value of 7.895 and the Pr(>|t|) of 7.41e-06 
***, Variable x.l2 had t value of --5.327 and the Pr(>|t|) of 0.000242 ***, Variable 
x1.l2 had t value of 2.999 and the Pr(>|t|) of 0.012095 *, Variable x3.l2 had t 
value of -10.905 and the Pr(>|t|) of 3.09e-07 ***, while x4.l2 had t-value -6.636 
and the p-value of 3.68e-05 ***, while Variable x6.l2 had t value of 8.698 and 
the Pr(>|t|) of 2.92e-06 ***, variable x.l3 had t value of -5.192 and the Pr(>|t|) 
of 0.000298 ***, variable x1.l3 had t value of 3.991 and the Pr(>|t|) of 0.002117 
**, variable x3.l3 had t value of -8.602 and the Pr(>|t|) of 3.26e-06 ***, variable 
x4.l3 had t value of -3.174 and the Pr(>|t|) of 0.008863 **, variable x6.l3 had t 
value of 8.248 and the Pr(>|t|) of 4.88e-06 ***, and the constant had a t value 
of -0.045 and the Pr(>|t|) of 0.000156 ***. 

The global model: x = - 0.05 - 1.31x.l1 + 0.70x1.l1 - 2.68x3.l1 - 4.15x4.l1 
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+ 1.89x6.l1 - 1.08x.l2 + 0.56x1.l2 - 3.12x3.l2 -4. 83x4.l2 + 3.66x6.l2 - 0.67x.l3 
+ 0.38x1.l3 - 1.18x3.l3 - 1.01x4.l3 + 1.93x6.l3.

Global model coefficient testing: Residual standard error: 5.84 on 21 
degrees of freedom. Multiple R-Squared: 0.9496, Adjusted R-squared: 0.969, 
F-statistic: 1769 on 25 and 21 DF, p-value: < 2.2e-16.

The fitted model explained 96.9% of the model variables which showed 
that the model fitted the data better. R-squared measures the strength of 
the relationship between predictor model and the dependent variable on a 
convenient 0 – 100% scale. It is worth mentioning that the trend coefficient 
and constant were highly significant. This meant that the model variables were 
determined by all the variables because there was a significant linear time 
trend in the data.

Conclusion

The determined lag order was three for the two zones and global vector. 
The coefficient of the models ranged from 1% and 10% significant levels, where 
most of them were at the category of 1% and 5%. These depicted the strength 
of the model coefficients and their predictability ability. The standard error was 
also determined and it lied between 0.001 to 0.3 which was considered to be 
small. Having included radiation and wind gust in the model, they did not have 
any influence and thus they were dropped from the final model. The techniques 
utilized and the outcomes displayed as a part of this study give experience 
into the impact of these factors on the meteorological forecasting. This study 
discovered that weather changes are influenced by several factors that need 
to be considered and applied to give a good forecast performance. The most 
important contribution of this study was the forecasting model developed could 
be used in artificial intelligent areas of meteorological department which would 
greatly improve their predictability performance.

Recommendations for Further Research

Climate models only predict a range of possible future scenarios, the 
extent of how far the future would be should be studied. The outcomes and 
the technique implemented in this study may contribute as a source of model 
for forecasting prospective of weather for other countries within the tropical 
region. The study recommends for further inclusion of more weather variables 
in the Bayesian vector auto-regression area. Application of other technique 
like Random Forest and Bootstrapping technique are recommended to check 
whether the accuracy may be further improved from other models.
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