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Introduction
Special properties of copper such as high electrical and thermal 

conductivities, good combinations of strength and ductility, and 
excellent resistance to corrosion have made it an excellent applicant 
to be utilized in industrial areas. On the other hand, high thermal 
conductivity of copper causes the need for higher heat input during 
conventional fusion welding, which results in large distortion, 
solidification cracking, and high oxidation rate. Fortunately, friction 
stir welding (FSW) which requires lower heat input for joining of the 
copper and copper alloys can overcome this problem [1,2]. 

Friction stir welding (FSW) as a solid-state welding process, which 
was invented in 1991 has been used for joining of different types of 
metals and alloys successfully [3,4]. Friction stir processing (FSP) is a 
new metal working method for producing surface composites, which 
is based on the concept of FSW [5]. During FSP, the stirred material 
undergoes severe plastic deformation. The material flow associated 
with stirring and severe plastic deformation can be used for bulk alloy 
modification by mixing in a second element. This mixing is followed by 
the precipitation of a second phase, distribution of fine particles of the 
second element, increased density of defects, and so forth. As a result, 
the stirred zone becomes a metal matrix composite with an improved 
hardness and wear resistance.

During recent years, some investigators have studied the fabrication 
of different types of surface composites using FSP technique, and 
have studied their microstructure, mechanical, and wear properties 
[6]. Although numerous investigations have been done on FSW of 
aluminum alloys, efforts in the FSW of the copper and copper alloys 
are somewhat limited [7]. Recently, some researchers have studied the 
microstructural and mechanical properties of the friction stir welded 
copper plates with different thicknesses of 1 mm, 2 mm [8], 3 mm [9]. 
For instance, Galvao et al. [10] have studied the effect of tool geometry, 
rotational, and traverse speeds on the microstructure and mechanical 
properties of the 1-mm-thick copper plates. They showed that for the 
same rotational and traverse speeds, finer grains, higher hardness, and 

enhanced strength can be achieved in the stir zone (SZ) of the joints, 
using a scrolled tool. Furthermore, Liu et al. [11] achieved a defect free 
3-mm-thick copper joint under a low heat input condition of 400 rpm 
and 100 mm/min, which resulted in a fine-grained structure in the SZ. 
In addition, Jabbari [12] has established a thermal model to simulate the 
FSW of 4-mm-thick pure copper plates in the constant traverse speed 
of 25 mm/min and five different rotational speeds. He demonstrated 
that the highest hardness, maximum tensile strength, and minimum 
elongation could be obtained at rotational speed of 900 rpm. 

Even though some investigators explored mathematical models 
in the case of some aluminum alloys, a research into the establishing 
mathematical relationships between the FSW parameters, grain size, 
and hardness of friction stir-welded AA 7020 aluminum alloy joints 
is lacking [7]. In addition, the effect of FSW parameters on grain size 
and hardness of the joints has not been studied more. Therefore, the 
aim of this study is to apply Ring Probabilistic Logic Neural Networks 
(RPLNN) to model and establish the functional relationships between 
FSW parameters, i.e., rotational speed, traverse speed and tool axial 
force, and responses of average grain size (Dav) and hardness (HV) of 
the friction stir-welded thick pure copper and optimize it utilizing the 
Genetic Algorithms (GA).

Experiment Work 
Identifying important parameters 

From the literature and the previous work [3,13] done among many 
independently controllable primary and secondary process parameters 
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Abstract
Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in aerospace, rail, 

automotive and marine industries for joining aluminum, magnesium, zinc and copper alloys. In this process, parameters 
play a major role in deciding the weld quality these parameters. Using predictive modelling for mechanical properties 
of FSW not only reduce experiments but also is created standard model for predict outcomes. Therefore, this paper is 
undertaken to develop a model to predict the microstructure and mechanical properties of FSW. The proposed model 
is based on Ring Probabilistic logic Neural Network (RPLNN) and optimize it utilizing Genetic Algorithms (GA). The 
simulation results show that performance of the RPLNN algorithm with utilizing Genetic Algorithm optimizing technique 
compared to real data is reliable to deal with function approximation problems, and it is capable of achieving a solution 
in few convergence time steps with powerful and reliable results.
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affecting the tensile strength, the primary process parameters such 
as rotational speed (N), welding speed (S), and axial force (F), were 
selected as process parameters for this study. The rotational speed 
(N), welding speed (S), and axial force (F) are the primary parameters 
contributing to the heat input and subsequently influencing the tensile 
strength variations in the friction stir welded thick pure copper plates.

Design of experiments 

A large number of trial runs were carried out using pure copper 
plates of 10 mm thicknesses as based. These plates were annealed at 
700°C for 1 h before FSW. FSW was conducted at a constant rotational 
speed of 700 rpm and different traverse speeds of 50 mm/min, 100 mm/
min, 150 mm/min, and 200 mm/min. Each of the welds are named 
in the text by a code which contains W and rotational speed divided 
by 100 and V, the traverse speed divided by 10. For example, a joint 
welded at 700 rpm and 50 mm/min is identified as W7V5. A FSW tool 
made of H13 steel with a shoulder (30 mm diameter) and a square pin 
(9 mm equivalent diameter and 9.7 mm length) was used, as shown in 
Figure 1.

The slope angle of the tool relative to normal direction of the work 
piece surface was set at 2.5°C. Subsequent to visual inspection of the 
joint surfaces; the microstructures of the joints were analyzed using an 
optical microscope (OM). Accordingly, the metallographic specimens 
were cut from the joints transverse to the welding direction, then 
polished and etched with a solution of 20 mL nitric acid and 10 mL 
acetic acid. Clemex image analysis software was used for calculation of 
average grain size and grain size distribution in the SZ of the different 
joints. This software distinguishes different grains via a range of color 
contrast and then computes related diameter Deq of each grain from its 
area using the following equation:

41.2247
π

=eq
AD

Where A is area (μm2). The microstructure of the W7V15 joint 
was also characterized by transmission electron microscope (TEM). 
For the TEM specimen preparation, specimen was thin polished and 
then double-jet electro-polished using a solution of HPO4/CH4O/
H2O=1:1:2 in volume. The Vickers hardness profiles of the joints along 
the centerline on the traverse cross section of the different joints were 
achieved using a 100 g load for 10 s. In addition, five tensile specimens 
were prepared per joint (Figure 2a) according to the ASTM:E8M 
standard and tensile tests were conducted at a crosshead speed of 1 
mm/min. Furthermore, the fractography of the tensile specimens was 
done by scanning electron microscope (SEM). Additionally, type K 
thermocouples were placed at the bottom of the plates exactly on the 
joint line, for recoding the temperatures during FSW (Figure 2b) [3].

Design of function free model

Artificial intelligence and cognitive modeling try to simulate 
some properties of natural Neural Networks. While similar in their 
techniques, the former has the aim of solving particular tasks, while the 
latter aims to build mathematical models of biological neural systems. 
In the artificial intelligence field, artificial neural networks have been 
applied successfully to speech recognition, image analysis and adaptive 
control, in order to construct software agents or autonomous robots. 
Most of the currently employed artificial neural networks for artificial 
intelligence are based on statistical estimation, optimization and 
control theory. The cognitive modeling field involves the physical or 
mathematical modeling of the behavior of neural systems; ranging 

from the individual neural level through the neural cluster level to the 
complete organism [14,15]. 

In this section we introduce the Ring Probabilistic logic Neural 
Network (RPLNN) by employing the concept of Probabilistic Logic 
Neuron (PLN) as powerful artificial intelligence technique that has 
been frequently used in pattern recognition problems [16,17].

RPLNN are made up of interconnecting artificial neurons. 
RPLNN may either be used to gain an understanding of biological 
neural networks, or for solving artificial intelligence problems without 
necessarily creating a model of a real biological system.

The tasks to which RPLNN can be applied tend to fall within the 
following broad categories:

Function approximation, or regression analysis, including time 
series prediction and modeling. 

Classification, including pattern and sequence recognition, novelty 
detection and sequential decision making. 

Data processing, including filtering, clustering, blind signal 
separation and compression. Application areas include system 
identification and control (vehicle control, process control), game-
playing and decision making (chess, racing), pattern recognition 
(radar systems), sequence recognition (gesture, speech), medical 
diagnosis, financial applications, data mining (or knowledge discovery 
in databases, "KDD"), visualization and e-mail spam filtering.

A PLN consist of a node and a truth table, inputs is given as 0 or 1 
and the output is in the form of 0 or 1. These numbers go to a decoding 

Figure 1: The picture of the used FSW tool in this 
study.

Figure 1: The picture of the used FSW tool in this study.

Figure 2: (a) Tensile test specimen and (b) thermocouple location.Figure 2: (a) Tensile test specimen and (b) thermocouple location.
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function, if the answer is desired the truth table will be saved otherwise 
random value will be replaced and the operation will start from the 
beginning. In other word, PLN optimization technique is trained and 
learned based on pure random search. Figure 3 shows schematic of 
PLN. This random search algorithm is known as A-Learning rule. In 
pattern reorganization PLN networks can be used by using A-learning 
rule algorithm [18]. 

The steps taken for A-learning rule can be summarized as below: 

1. Encode an initial population.

2. For each Gen in each individual assign a PLN with random 
inputs and outputs 

3. Calculate the fitness function for each individual.

4. If the calculated fitness function is equal to the desired value, 
save the value of inputs and outputs.

5. If the fitness function is not equal to the desired value, reset 
the inputs and outputs values and calculate the fitness function 
again and train the network for m times, where m is a positive 
non-zero integer (we assume m=10).

6. If the calculated fitness function is equal to the desired value, 
save the value of inputs and outputs.

7. If the calculated fitness function is not equal to the desired 
value, go to calculation for nest individual.

8. Repeat these steps until all random values will be changed to 
fixed values.

PLN networks can be formed in different structures and there is 
no exact pattern to select which architecture should be used (Figure 4).

The structure shown in following Figure 5 is used as one layer 
RPLNN structure case to generate function approximation based 
model to model the data obtained in tests, which described in previous 
section. Function approximation using RPLNN is a completely novel 
technique to model different systems, and it has an advantage of 
simplicity in calculations and obtaining better results in less time over 
other computational techniques [19].

Implementing optimization

A genetic algorithm emulates biological evolution to solve 
optimization problems [20]. It is formed by a set of individual elements 

(the population) and a set of biological inspired operators that can 
change these individuals. According to evolutionary theory, only the 
individuals that are the more suited in the population are likely to 
survive and to generate offspring, thus transmitting their biological 
heredity to new generations. 

In computing terms, genetic algorithms map strings of numbers 
to each potential solution. Each solution becomes an individual 
in the population, and each string becomes a representation of an 
individual. There should be a way to derive each individual from its 
string representation. The genetic algorithm then manipulates the most 
promising strings in its search for an improved solution. The algorithm 
operates through a simple cycle [21]: 

1) Creation of a population of strings. 

2) Evaluation of each string. 

3) Selection of the best strings. 

4) Genetic manipulation to create a new population of strings. 

At the first stage, a population of possible solutions is created as a 
start point. Each individual in this population is encoded into a string 
(the chromosome) to be manipulated by the genetic operators. In the 
next stage, the individuals are evaluated, first the individual is creat-
ed from its string description (its chromosome) and its performance 
in relation to the target response is evaluated. This determines how fit 
this individual is in relation to the others in the population. Based on 
each individual's fitness, a selection mechanism chooses the best pairs 
for the genetic manipulation process. The selection policy is responsi-
ble to assure the survival of the fittest individuals. The manipulation 
process applies the genetic operators to produce a new population of 
individuals, the offspring, by manipulating the genetic information 
possessed by the pairs chosen to reproduce. This information is stored 
in the strings (chromosomes) that describe the individuals. Two opera-

Figure 3: Probabilistic logic neuron (PLN).Figure 3: Probabilistic logic neuron (PLN).

Figure 4: Example of structure of PLN network.Figure 4: Example of structure of PLN network.

Figure 5: The ring probabilistic logic neuron (RPLN).
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tors are used: Crossover and mutation. The offspring generated by this 
process take the place of the older population and the cycle is repeated 
until a desired level of fitness in attained or a determined number of 
cycles are reached. 

The objective function is used to provide a measure of how 
individuals have performed in the problem domain. In the case of 
a minimization problem, the fit individuals will have the lowest 
numerical value of the associated objective function. This raw measure 
of fitness is usually only used as an intermediate stage in determining 
the relative performance of individuals in a GA. Another function, the 
fitness function, is normally used to transform the objective function 
value into a measure of relative fitness, thus:

F(x)=g(f(x))

Where f is the objective function, g transforms the value of the 
objective function to a non-negative number and F is the resulting 
relative fitness. This mapping is always necessary when the objective 
function is to be minimized as the lower objective function values 
correspond to fitter individuals [20].

In many cases, the fitness function value corresponds to the 
number of offspring that an individual can expect to produce in the 
next generation. Normally, in the genetic algorithm, error has an 
important role in expressing fitness function [21]. 

For our purpose we defined fitness function as a function of error:

1 
1

=
+

Fitness Function
E

E=mean|ek|

|ek|=(RPLNN model output)-(Experimental data)

Results and Discussion
As seen in Figure 6 the test results show that ultimate tensile 

strength (UTS) of the joints increases with increasing the traverse 
speed up to a maximum value and then decreases.

Figure 7 shows the test result for changes of elongation (EL) of 
the joints with changing the traverse speed. EL of the joints decreases 
continuously with increase of the traverse speed.

As mentioned before in this paper RPLNN algorithm is chosen to 
deal with modeling the mechanical properties of FSW thick copper 
plates from the point of view of the changing Elongation and ultimate 
tensile strength due to changing the travers speed (TS). The RPLNN 
model is trained using the data obtained during the laboratory, as seen 
in Figure 8 simulation results show that the error of the generated 
RPLNN model for UTS-TS and EL-TS after 100 training iterations 
respectively converges to 2.5 and 1.2. 

The ultimate goal of the modeling is to generate a model reflecting 
the reality, so as mentioned before Genetic Algorithms is used here 
to optimize the RPLNN models to reduce the difference between of 
the output of the models and real data to generate reliable models. As 
seen in Figure 9 by utilizing GA as optimization technique, the error of 
the RPLNN models of UTS-TS and EL-TS respectively are reduced to 
0.003 and 0.001, which with compare to the amounts of EL and UTS 
are very small and neglect able.

Summary and Future Work
In this paper, changing ultimate tensile strength and elongation of 

the joints due to changing the speed of traverse as mechanical properties 
of FSW thick copper plate is modeled by RPLNN architecture and the 
model optimized using genetic algorithms as evolutionary artificial 
intelligence optimization technique. The results show that the generated 
model is reliable and can predict output with neglect able error. 

As future work, different mechanical properties can be modeled 
Figure 6: Test results for ultimate tensile strength.Figure 6: Test results for ultimate tensile strength.

Figure 7: Test result for elongation.Figure 7: Test result for elongation.

Figure 8: Simulation error for UTS and EL.Figure 8: Simulation error for UTS and EL.

Figure 9: UTL and EL RPLNN model error after optimizing by GA.Figure 9: UTL and EL RPLNN model error after optimizing by GA.
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using different artificial intelligent techniques and different 
optimization techniques can be used to optimize the models.
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