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Many of the critical pathways that govern vertebrate development 
are highly conserved between humans and zebrafish (Danio rerio). 
The zebrafish genome shares a high degree of sequence similarity 
to that of humans. Approximately 70% of genes associated with 
diseases in humans have functional homologs in the zebrafish [1]. In 
addition zebrafish as an experimental model offers many advantages 
including their ability to produce large number of eggs (a single cross 
can generate 200–300 embryos), they develop outside the body, are 
transparent making them amenable to follow during organogenesis. 
Development is rapid with major organ primordial forming by 24 hours 
after fertilization. Compared to other vertebrate models, zebrafish are 
easy and inexpensive to raise and maintain. [2]. George Streisinger, 
a founding father of zebrafish research was one of the first to work 
with zebrafish in the late 1960s [3]. He began to study embryonic 
development particularly that of the nervous system by employing 
mutant strains [4-6]. Realizing the importance of the zebrafish model, 
Grunwald and Eisen used this developmental model to study the 
segmental structures of the brain and characterized neurons in the 
zebrafish that had not been reported in any other vertebrate model 
[7]. Christiane Nüsslein-Volhard, a fruit fly geneticist at the University 
of Tübingen, who identified 120 developmentally important genes in 
Drosophila melanogaster [8], recognized the usefulness of zebrafish as a 
vertebrate model, and established collaboration with Marc Fishman at 
the Massachusetts General Hospital [9] to study these developmentally 
important genes in zebrafish.

Forward Genetics
In Forward Genetics heritable mutagenic lesions are created with 

the use of chemical (ENU: Nethyl- N-nitrosourea) [9] or insertional 
(retroviruses or transposons) [10,11] mutagenesis approaches. 
Mutagenic lesions are screened for particular phenotypes and the 
causative genes responsible for a given phenotype are identified through 
positional cloning and or through the candidate gene approach [12,13]. 
The success of the “Big forward genetic screen” Nüsslein-Volhard et al. 
[9] commonly referred as “Tübingen/Boston screens” created a significant
impact on the use of zebrafish as a promising system to model disease
and development. The results were published in the entire volume of
the Journal Development [14]. A major drawback of this approach is,
with the large size of the zebrafish genome the identification of mutant
genes can be time consuming and laborious [15].

Reverse Genetics
Reverse Genetics involves the selection of a target gene and 

creation of mutants of the selected gene and investigation of the 
associated phenotypes to uncover function of the gene in question. 
Many reverse genetic approaches have been developed recently [16]. 
These include the use of antisense morpholino (MO) oligonucleotide 
mediated gene knockdown technology [17,18], Targeting induced 
local lesions in genome (Tilling) [16,19], Zinc Finger Nucleases (ZFN) 
[20,21], Transcription Activator-Like Effector Nucleases (TALENs) 
[22] Tol2 mediated Transgenesis [23,24], GAL4-UAS System [25],

Tol2-mediated Gal4/UAS [26], Cre/Lox system [27] and a tamoxifen-
inducible Cre/lox method [28]. Among them TALENs, ZFNs and Tol2 
mediated transgenesis methods are becoming successful in defining the 
functional roles of target genes. Both GAL4/UAS and Cre/Lox methods 
are less efficient due to the limited understanding of tissue/cell specific 
promoters and there is no guarantee that they will work as expected. 
Further development in these technologies would facilitate their better 
application in zebrafish research.

Modeling Vertebrate Development
Both forward and reverse genetic approaches have been employed 

in zebrafish to define the role of genes involved in the development 
of vertebrate organs, tissues and cells. A recent key word search of 
PubMed revealed 8596 publications on the use of zebrafish in vertebrate 
development. Some of the examples include development of the 
cardiovascular system [29], the endoderm [30], motor neurons [31,32] 
and craniofacial structures [33]. The insights gained from zebrafish are 
directly applicable to humans since molecular mechanisms that regulate 
vertebrate development are highly conserved between the two species.

Modeling Disease
With the exception of few organs namely the lungs, prostrate and 

mammary gland, most of the tissues and organs present in humans 
are found in the zebrafish. The cloning of mutated genes screened for 
specific phenotypes have revealed similarity in humans and thus serves 
as models for human disease and to study underlying mechanisms. The 
first human disease model in zebrafish to be defined in this was the 
sauternes (sau) mutant responsible for a blood disorder involving a 
specific defect in hemoglobin production. The mutated gene responsible 
for the blood disorder was ALAS-2. Many other mutants showing 
phenotypic similarity to human diseases have been screened and later 
identified to have human homologues. These include hematological 
disorders [34,35], neurological disorders [36], cardiovascular diseases 
[37], muscle disease [38] and cancers [39,40]. Detailed reviews on 
modeling human diseases in zebrafish have been published [1,7,41,42].

Drug Screening
High throughput chemical screening in zebrafish is a very promising 

tool since it can be undertaken by simply placing zebrafish embryos 
in 96 well plates, adding chemicals to the water and then looking for 
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the suppression of a given phenotype. The efficacy and toxicity of new 
compounds can be simultaneously assessed by employing this method 
[43]. The applicability and advantages of using zebrafish embryos over 
other models in drug screening have reviewed in detail [44-46]. Large 
scale chemical screening using zebrafish have been conducted recently 
with the aim of identifying novel biological and therapeutic compounds 
[47]. Important compounds discovered in this way are being tested 
currently in clinical trials [48,49].

Conclusion
Zebrafish is a versatile system, offering many molecular and genetic 

tools to model human disease and development to study gene function 
during normal development and disease. More recently its utility in 
the identification of lead compounds by drug screening has proven to 
be cost and time effective. However, potential therapeutic compounds 
identified from initial screening need to be further validated using 
another vertebrate model systems before making final decisions about 
the possible development of the compound for use in treating particular 
diseases (Figure 1).
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Figure 1: Zebrafish as a Genetic and Developmental Model. Zebrafish has 
emerged as a powerful system to model vertebrate disease and development 
using various molecular and genetic tools. Zebrafish genome possesses a 
high degree of similarity to that of humans. The other advantages of using the 
zebrafish model include the generation of large numbers of embryos per cross, 
transparency and development outside the body. Development is rapid, and 
embryos are comparatively easy and inexpensive to grow and maintain. The 
success of the “Big forward genetic screen” commonly referred as “Tübingen/
Boston screens” generated significant impact on the use of zebrafish as a 
promising system to model disease and development. Recent establishment 
of various reverse genetic approaches as listed in the above figure serves as 
a promising tool to interrogate the function of target genes. Application of both 
forward and reverse genetic approaches in the zebrafish model will uncover 
the roles and biological functions of many genes involved and to gain insights 
about the associated signaling pathways during development including namely 
heart and craniofacial development and disease processes including blood 
disorders, cardiovascular diseases and cancer. The use of zebrafish in the drug 
screening approach potentially facilitates fast and cost-effective identification 
of potential lead components and initial validation as potential therapeutics.
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