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Abstract

The unprecedented financial crisis of 2008-2009 has called attention to limitations of existing methods for
estimating the default risk of financial intuitions. To address this need, | built and tested a time-adaptive statistical
model that predicts the default probabilities of banks. The model inputs are a set of financial ratios suggested in the
literature, and subsequently verified, to be effective in forecasting future bank failures. The model provides estimates
of banks’ cumulative default probability profiles from one to thirty years out, albeit with decreasing accuracy. The
model was validated through out-of-sample testing regarding its ability to accurately predict the defaults of U.S.
depository institutions between 1992 and 2012. This method provides out-of-sample testing as well as best mimics
how the model will be used in practice. The model performed well at separating potential defaulting banks from non-
defaults over one-year horizons. Although performance drops monotonically when predicting defaults over longer
horizons, the model performs significantly above chance for time periods as long as five years from the scoring date.
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Introduction

Since exposure to credit risk continues to be the leading source of
problems in financial institutions, banks need to be able to identify,
measure, monitor and control credit risk in order to ensure they hold
adequate capital against the default risks. Regulators and financial
institutions have placed a great deal of emphasis in recent years on the
importance of models for credit risk measurement and management.
Generating accurate model-based estimates of default probabilities
(PDs) for financial firms has proven difficult over the past decade.
Some reasons for this are financial institutions’ high levels of leverage,
the relative opacity of their assets and liabilities, potential support
from governments, extreme risk of “tail events”, and regulatory
changes.

Since the financial crisis of 2008-2009 and the subsequent
downgrade of many financial firms, investors are increasingly
interested in better assessing and managing their credit exposure to
financial institutions. In addition, the U.S. Office of the Comptroller of
the Currency (OCC), in accordance with the Dodd-Frank Act, has
published final rules! that remove references to credit ratings from its
regulations pertaining to investment securities, securities offerings,
and foreign bank capital equivalency deposits.> Amid this backdrop,
the development of accurate models for assessing bank credit risk
appear critical both for managing exposure to financial firms and for
compliance with Federal regulations.

Department of the Treasury, 2012

The empirical literature indicates the Merton-type structural
models do not appear to be a sufficient statistic in predicting default
probabilities as these models under-predict spread on corporate
bonds.> 1 have constructed and tested an adaptive non-linear
regression model to estimate default probabilities for U.S. banks using
information only from their financial data as reported by the U.S.
Federal Deposit Insurance Corporation (FDIC). The model is a logistic
regression whose input variables are selected based on their past
effectiveness at predicting bank failures and whose inclusion in the
model and weights are to be updated quarterly. Model performance at
discriminating between defaults and non-defaults was evaluated for
horizons of one to five years using a sequence of ten-year annual
forward out-of-sample tests. I tested the ability of the model to predict
absolute default rates out to five years. The model performed well at
estimating the annual bank default rates except that it underestimates
the high bank default rates during the financial crisis. The model
performs favorably at predicting default risks with a 97% accuracy
ratio (AR) at one year before default, and decreasing, but still above-
chance predictive power out to five years. For example, the top 10%
banks with the highest risk scored from the model contain 94% of the
banks that defaulted within the following year. Although performance
drops monotonically when predicting defaults over longer horizons,
the model performs significantly above chance for time periods as long
as five years from the scoring date.

Modeling Banks’ PD

The numerous bank failures amid the financial crisis of 2008-2009
and the subsequent ratings downgrades of many financial firms have

Section 939A of the Dodd-Frank Act requires federal agencies to review regulations that require the use of an assessment of

creditworthiness of a security or money market instrument and any references to, or requirements in, those regulations regarding credit
ratings. Section 939A then requires the agencies to modify the regulations identified during the review to substitute any references to, or
requirements of, reliance on credit ratings with such standards of creditworthiness that each agency determines to be appropriate.

3

For example Huang and Huang (2000) and Eom, Helwege, and Huang (2003).

Bus Eco ]
ISSN:2151-6219 BEJ, an open access journal

Volume 5 « Issue 4 « 1000126


mailto:katextong@gmail.com

Citation:

Tong X (2014) Modeling Banks’ Probability of Default. Bus Eco J 5: 126. d0i:10.4172/2151-6219.1000126

Page 2 of 8

highlighted limitations of agency credit ratings and current credit
models to anticipate defaults for financial firms. During the crisis,
many banks went from apparent solvency to default in a very short
period of time presumably reflecting the particular sensitivity of
financial institutions and insurance companies to sudden declines in
investor confidence. Although the credit ratings of financial firms are
concentrated in the investment grade range, results from Vazza and
Kraemer [1] in Figure 1 demonstrate that despite their higher credit
ratings, financial firms have a faster and steeper path to default than
their non-financial counterparts®.
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Figure 1: Paths into Default for financial and non-financial firms
from Vazza and Kraemer [1]. Source: Standard and Poor’s.

There are several challenges to measuring credit quality of financial
institutions. First, financial firms operate differently from most non-
financial corporates, running highly levered balance sheets financed by
short-term borrowing, thereby having greater exposure to market risk
and funding risk.> Differences also include the relative opacity of
banks’ assets and liabilities, potential support from governments,
extreme risk of “tail events,” and exposure to regulatory changes. I
note that it is a general perception that Merton-type structural models,
including Hybrid Probability of Default Model (HPD), fare relatively
poorly at estimating PDs for financial firms. There are several reasons
for this including:

e Financial firms typically use short-term borrowing to finance
long-term obligations, thereby carrying much higher leverage than
similarly risky non-financial firms. Because leverage is an important
source of risk in structural models, Merton-type structural models
typically over-estimate PDs for financial firms, relative to similarly
risky non-financials. To correct this, structural models often embed
adjustments to leverage and/or volatility for financial firms, but these
can cause other problems;

o Although several available structural models differentiate between
financial firms and industrial ones (emphasizing short-term liabilities
more), there are relatively few defaults by publicly traded financial
firms, posing difficulties for model calibration. Thus, the financial
models are calibrated to ratings upgrades and downgrades which tend
to trail perceptions of risk as indicated by credit. This introduces
uncertainty in mapping model outputs (a ranked risk measure) to
historical default rates;

® The asset quality of financial firms is often opaque (e.g., Lehman
Brothers), making it more difficult to assess the credit quality of
financial firms from an examination of their financial statements.

o Although we find that the HPD model does well at identifying
rich and cheap bonds for commercial and industrial firms, it does not
work as well for financial firms.

Modeling considerations aside, it is important to note that there are
many banks and most of which are privately held firms and often
unrated by major agencies. Since private firms have no publically
traded equity, Merton-type default models such as KMV cannot score
those firms. As of March 2013, there were 7,019 depository institutions
in the U.S. reporting to the FDIC with total liabilities of $12.8 trillion.®
For investors with broad exposure to the banking sector, it is difficult
to analyze a large number of banks using fundamental analysis. Thus, I
chose a statistical approach to estimating risk of bank failure. As
described below, I use an adaptive logistic regression function on
information contained in banks’ financial statements as published by
the Federal Deposit Insurance Corporation (FDIC). The inputs to the
model are financial ratios found to be effective in forecasting future
bank failures and the outputs are predictions of annual cumulative
PDs for each bank from one to 30 years.

PD= !

a2 *
po+ X Bi xi

=1

l+e
Regression Function, the Input Variables and Coefficients.

I back-tested the model’s ability to predict defaults of U.S.
depository institutions between 1992 and 2012. The testing was
conducted using an annual walk-forward procedure to best simulate
how the model will be used in practice. The testing dataset included
16,520 distinct banks and 604 default events’. That is, to make PD
predictions for any year, I only use information before that year to
select model variables and calibrate the model coefficients.

4 Por example, Vazza and Kraemer [1] report that in 2011 only 20% of all financial firms had speculative grade ratings.
> Asof March 2013, the average liability-to equity ratio of the US banking sector was 7.8.
¢ Information about aggregate bank sector size obtained from the FDIC® “Statistics on Banking,” which is accessible online at http://
www2.fdic.gov/SDI/SOB/.
7 The difference between these numbers of defaults and firms shown in Figure 1 is that 105 defaulted banks were included in the first
development sample and were thus unavailable for out-of-sample testing.
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Distributions of One-Year PDs for
Defaulting and Non-Defaulting Banks
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Figure 2: Distributions of One-Year PDs for Defaulted and Non-
Defaulted Banks.
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Figure 3: Cumulative Accuracy Profiles (CAP Curves) at One- to
Five-Year Horizons. Building the PD Model.
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Estimates of PDs from the model displayed a high degree of
accuracy in out-of-sample back testing, both at predicting relative
default risk and absolute default probabilities. Both aspects of
performance are important for different applications as discussed
further below. The model performed well at separating potential
defaulting banks from non-defaults over one-year horizons (Figure 2).
The banks in highest 10th percentile of PDs include 94% of the
defaulting banks within the next year.® As expected, the predictive
power of the model decreases as prediction horizon is extended but the
model still performs well above chance multiple years out (Figure 3).

8

from the model.
9

Also, the number of defaulters within the 10% of banks having the
largest PDs declines from 94% to 80%, 68%, 55%, and 40% at two,
three, four, and five year horizons out, respectively.

Selecting Financial Variables

Since the pioneering work of Beaver [2] and Altman [3], financial
modelers have realized that certain financial ratios are highly
predictive of a firm’s future default. The same is true for banks. For
instance, banks with low, especially negative, return on equity (ROE)
are much more likely to default. Intuitively, banks with low or negative
profitability will likely struggle to pay their liabilities on time and will
have difficulty finding additional funding. To illustrate this effect
Figure 4 displays normalized distributions of ROEs for defaulting and
non-defaulting banks. Distributions are shown for one-, two-, three-,
and four- year horizons in successive panels.” Inspection of Figure 4
reveals that banks with low ROE are much more likely to default than
those with high ROEs. Also, the predictive power of the ROE as
regards default decreases with increases in the time horizon. That is,
the distributions of ROEs from defaulting and non-defaulting banks
are clearly apart from each other at one-and two-year horizons, but
those differences narrow, becoming very small at four years out.
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Figure 4: Distributions of Normalized ROEs for Defaulting and
Non-Defaulting Banks at One-, Two-, Three-, and Four-Year

Horizons.

A similar testing procedure as illustrated in Figure 4 for ROE
revealed other financial ratios that are useful for default prediction.
These include firms’ leverage ratios, ratios of non- performing to
performing loans, and net loans to bank capital, to name a few. A
challenge in predicting default is to select an appropriate set of
variables and combine them appropriately in a multivariate model. To
do this, I employed a walk-forward logistic regression technique. The
logistic regression function (described in the following section) is
commonly used for predicting variables with binary outcomes,
particularly when the inputs are non-linearly related to the desired
output. The walk forward method constructs a new model each year
from the candidate variable set, while adding the data from the
previous year to the development sample. For variable selection in
each new model, I use an automated procedure called forward
stepwise selection, which is explained in detail below.

Logistic Regression

Logistic regression is the sum of linear functions of multiple input
variables put through a non-linear transformation before output. It
has similarities to the more familiar multiple linear regression method,

If the model were performing at chance, only 10% of the defaulters would be included in the top 10% of the population ranked by PDs

Because financial ratios such as ROEs can have very dispersed distributions, I converted firms’ ROEs into standard normal distributions

before plotting. This transformation does not change the ordering of firms on the ROE axis.
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but involves an extra step, the logistic transform. I illustrate this
graphically for a set of hypothetical input variables in Figure 5. The
application begins with selection of a set of candidate financial
variables, denoted x;, i=1,..., n. The inputs, x;, could be financial ratios
or other quantities. The lower portion of Figure 5 depicts how values
of hypothetical input variables (the circles in each plot) are fit by
functions, of the form

f(xi)=ai+Bix; (1)
to derive constants, a;, and coefficients, B;, for each input variable.

Then, for a given set of inputs, each xi is put through its linear
transform in Equation 1. For variable x; for the example in Figure 5,
the constant a;=0 and the coefficient 3;=-3. Thus, if a;=0.5 as shown
in the figure, f(x;)=-1.5. Hypothetical functions and outputs for x, and
X, are also shown in Figure 5.

&8 & % ¥

Probabay of Dl (%)

-

Figure 5: Logistic Regression Function: Linear transformations of
financial variables (lower plots) are summed at an intermediate
stage and put through the logistic transform (top graph) which
converts the output to a value between 0 and 1 (0% and 100%).

Linear functions of the input variables are summed at an
intermediate stage in the model whose output is transformed using the
logistic function. The resulting outputs of the first stage of the logistic
regression, the values f(x;), are summed at an intermediate stage whose
output z can be represented as

z=Po+ 2 Bixi )

=1

Where

po= 2 aj )

=1

For the example in Figure 5, the resulting value of z is assumed to
be -1.2.10 The value of z from Equation 2 is then put through the

10

to xn-1 that are not given in the figure.

logistic transform that serves to constrain the output of the regression
to a value between 0 and 1. For example, for the default model, the
resulting PD is given as:

1

PD= (4)

-z
l1+e

Where the resulting value of PD for z=-1.2 is 0.26 or a 26%
probability of default over the time frame in question.

Forward Stepwise Selection of Input Variables

I use a forward stepwise selection procedure to choose input
variables for the logistic model. Note that the overall plan is to derive a
new model each year, incorporating into the learning sample the data
from each successive year’s defaulting and non-defaulting firms.
Because the factors that influence defaults and their relative
contributions may change over time, I chose to use an adaptive
procedure for selecting variables for each annual model. I first
assembled a set of 20 candidate financial ratios that have been shown
to be predictive of subsequent default. Because the distributions of
different financial ratios can vary widely, I chose to standardize all
input variables via transformation into standard normal distributions
before testing their usefulness as inputs to each annual model.

Variables for each annual model are chosen via an iterative
procedure, whereby variables are prioritized with respect to their
predictive power. The process of model construction begins with only
the logistic function and no variables chosen for inclusion. Then, for
each candidate input variable, I build a logistic default model by
selecting values of a; and P; for each variable that enables the best
prediction of default on the development sample. That is for each
input variable x;, I solve for x; and B; in the following equation for PD:

1

e 7

The variable with the greatest predictive power with respect to
default is chosen as the first input variable. As described in further
detail below, I chose the Bayesian Information Criterion (BIC)
developed by Schwartz [4] as my measure of predictive power. The
BIC measures how well the model fits the data, but also imposes a
penalty for having too many variables, thereby guarding against over
fitting the data. After selection of the first variable, the process
repeated to select a second variable, and so on, until model
performance ceases to improve. Once all the variables for the model
are selected, the value of the constant p and coefficients f; (i=1,..., n)
for each of the variables are refit to minimize the error in the logistic
regression equation:

pp=— 1 )

n
o+ T ,b’j*xf]

=1

l1+e

Successive variables are chosen until no further improvement in
performance is achieved. An illustration of the results of variable
selection is presented in Figure 6. The top portion of the left panel
displays the logistic regression equation, with the table below it listing
the input variables to the model in the order in which they are selected.
That is, variables are listed in descending order of their predictive

Note that this value of z cannot be deduced from the values shown in Figure 3 as it is assumed to have contributions from variables x3
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power. The BIC values resulting from inclusion of each variable are
also displayed. The right portion of Figure 6 is a plot of the BIC values
that result from the inclusion of each variable. For instance, the model
starts with only a constant term whose BIC value is 7,459. The variable
selection procedure determined that banks’ return on equity (ROE)
provides the largest predictive power of all candidate variables, and its
inclusion in the model achieves a BIC of 4,092.

1 £ 9,000 -
PD=————
B ,Zﬂ:.‘. 2 8,000
\ ) o
l+e = 7.000
L2
-
Variable Coefficient 2 5000
N L3 B BIC E
0 Constant 038 8174 ‘£ 5000
1 ROE 0,79 4274 =
2 Liabllity! Asset 118 373# § sp00 -
3 Mon-Current Loans [ Loans 0Tz 3522 w
4 ROA 451 3485 S0 | e
5  MetLoans/Bank Equity Capital 045 3441 g ) )
6 Eaming Assets | Assets 021 34% o 1 2 3 4 & 6

Number of Variables Selected

Figure 6: Left: One-Year Bank PD Model Equation, Variables, and
Corresponding Coefficients (Green: List Risky; Red: More Risky),
With Variables Listed in the Order Selected. Right: Bayesian In
formation Criterion (BIC) for Each Successive Variable Selected.

After selection of the ROE, the procedure is run again, picking the
Liability/Asset ratio as the best of the remaining candidate variables,
bringing the BIC down to 3,568. This procedure continued until the
BIC could no longer be decreased. At that point, six variables had been
selected and their corresponding coefficients appear in the left table of
Figure 6.

The Term Structure of Bank PDs

The method I have described cab be used to predict defaults over
one- to five-year horizons. However, some applications (e.g., long-
term investment portfolios) require estimation of the term structure of
PDs over longer periods. My approach to extending the term structure
of bank PDs for terms beyond five years is to use long-term annual
average marginal default rates determined from historical data on
bank defaults.

Construction of PD term structures begins by using the set of five
logistic regression models, each developed for the marginal default rate
between successive years over a period from one to five years. That is,
let PDt denotes the model designed to predict bank defaults t years
from now, conditional on the given banks surviving to year t-1. That
is, for years t =1,..., 5, PDt is the conditional logistic regression model
where

PD= ! (7)

n
—|ft+ ¥ Ptixti
l+e

=1

Then, for each bank j, the probability of default in year t assuming
survival to year t-1 is given by

11

PD= ! )

n
—(,BH Y Btixtij
l+e

i=1

Note that because I fit a separate model for each year, the variables
selected and the coefficients Bj,t will, in general, be different for each
year. Let, CPDy; be the cumulative probability of default for bank j
from time t=0 to t years. Then, the cumulative probabilities for bank j
over horizons from t=1 to T years can be determined from their
annual PDs as:

CPDI, j=P1,j
CPD2,j=CPD1,j+ (1 - CPDi,1). P2, j
CPDT, j = CPDT-1,j + (1 - CPDT-1,j ).PT,j

The procedure for calculating marginal PDs beyond five years is
illustrated in Figure 7. First, I construct a map between one-year PDs
and Standard & Poor’s rating categories. This is made possible using a
map that I derived between average probabilities of default for
commercial and industrial firms from HPD model [5,6] and their
corresponding agency ratings!!.

For example, the left panel of Figure 7 illustrates a mapping
between one-year PDs from the HPD model to rating categories
calibrated using data of all U.S. banks between 1982 and 2012. Using
this map, I can assign an implied rating to each bank that corresponds
to its current one-year PD from the logistic regression model. Then,
for a given bank, I combine its term structure of cumulative default
rates from one to five years with the marginal annual default rates
reported by Moody’s from its imputed credit rating from six to thirty
years. That is, I assume each bank’s conditional PD beyond five years
follows the long-term historical values for its implied rating category.
A resulting set of stylized bank annual cumulative default rates by
implied whole letter rating categories appear in the right panels of
Figure 7. The top panel shows cumulative default rates on a linear PD
scale, whereas the lower plot shows those same data in logarithmic PD
units [7-10]. Notice that, as expected, average cumulative default rates
for any given tenor increase with decreasing rating categories.

I back-tested the model by constructing an annual series of models
of the bank models using all available US bank data from 1992 to 2012.
The number of non-defaulting banks and defaulting banks in the
sample by year are given by the green bars (left axis) and red bars
(right axis) in Figure 8. Notice that there were roughly 14,000 banks in
the sample in 1993, but that number declined to around 7,000 by 2012.
Also, there are three apparent waves of defaults: one in the early 90s, a
small one around the year 2000, and a surge of bank failures during
the recent financial crisis.

In order to determine out-of-sample performance of the model, I
used a walk-forward procedure as illustrated in Figure 9 for the one-
year model [11-13]. The test set is sufficiently large, with a total of 499
defaulters out of 11,114 distinct banks, to provide a strong test of
model performance. Because the model needs a minimum number of
years of data for development, data from the years 1992 through 1999
were used to construct the first annual model (select variables and
calibrate the weights) for each horizon for one to five years. The one-
year model for 1999 was then used to score all non-defaulting banks at

That rating map is constructed using PDs from the HPD model for non-bank corporate firms. Then firms are ranked with respect to

their model PDs and assigned to rating categories that replicate the number of firms in each rating category in the sample. Finally, implied
ratings for U.S. banks are assigned based on their inclusion within PD boundaries determined for each rating category.
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the beginning of 2000 and its ability to predict defaults in 2000 was
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Figure 7: Left: Mapping From One-Year PD to Imputed Risk
Category; Right: Term Structure of Average Cumulative Bank PD

For Each Implied-Rating Category on Linear (Top) and
Logarithmic (Bottom) Scales. Model Back testing.
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Figure 8: Number of Non-Defaulting Banks (Green Bars, Left Axis)
and Defaulting Banks (Red Bards, Right Axis) Banks by Year in the
Development Dataset.

To generate the set of models for year 2000 (i.e., used to predict
defaults in 2001 to 2005 for one- to five-year models), I added the data
from year 2000 to the set from 1992 to 1999. Variables were selected
and coefficients determined and the model was tested on the
corresponding test sample for the given horizon. That procedure was
repeated annually until 2012. Of course, from models at horizons
longer than one year, testing was only able to be done to year 2012
minus the horizon year. I adopted the walk forward procedure because
it most realistically estimates the performance of the model as it will be
deployed in practice.

all banks over the entire 13-year test period from highest to lowest by
their one-year PDs from the models. Then, for successive intervals in
the ranked population I calculate the cumulative fraction of defaulting
banks contained within that interval. The interpretation of CAP curves
is straightforward; for any criterion, the fraction of defaulters caught
above the population percentile is measures the discriminatory power
of the model. For example, the CAP curve for the one-year model at
the 10% population criterion caught 94% of the banks that defaulted
within the following year over the period from 1999-2012. The higher
and steeper the CAP curve over the diagonal chance line, the better the
model is at discriminating defaulters from non-defaulters. The table at
the right in Figure 10 displays values of the CAP curves for each of the
model horizons for various values of the population cut-off. The left-
most values in the table show that the 10% of banks ranked riskiest by
the one- to five-year models capture 94%, 80%, 68%, 55%, and 40% of
the defaulting banks, respectively. Not surprisingly, those data reveal
that the power of the models decline as the horizon extends beyond
one year, but even the five-year model is performing well above
chance, capturing 40% of the banks that default in the fifth year after
model development and scoring. Finally, it is important to note that
even though the models are only regenerated on an annual basis, the
financial data from the banks is available to update bank default scores
on a quarterly basis and that is how the model will be used in practice.

From a risk management perspective, the most relevant horizon for
prediction is at one year. Thus, if a bank survives for that one year, the
next year’s model can be used to assess its subsequent risk. Still, there
are applications for which multi-year estimates of losses and portfolio
relative value are of interest. These include buy-and-hold portfolios of
bank obligations, such as structured products. For example, if one
holds a portfolio of bank TRUPS (trust preferred securities) with five
years of remaining maturity, they may wish to estimate five year
portfolio losses. For this type of application, it is important that the
absolute PD levels be accurate. The CAP curves, because they rank
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PDs, assess only the relative accuracy of the models!2. Indeed, the
models do specify absolute PD levels and I can assess their accuracy
using the reliability plots in Figure 11. To construct the plots in Figure
11 I separated all banks into bins by 5% PD increments, and plot each
bin’s average predicted PDs on the horizontal axis and the realized rate
of defaults on the vertical axis. The interpretation of reliability plots is
as follows.

100

= Percent Defaults Caught
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Figure 10: Left: CAP Curves for Predictions of Bank Defaults for
One- to Five Year Models using Walk- Forward Testing from 1999
Through 2012; Right: Values of the One- to Five-Year CAP Curves
at Critical Thresholds, with Corresponding Values from the Chance
Line Also Shown.

Least
Righy

For example, the one-year plot includes the point (27% predicted,
31% obtained), which means for all the banks assigned one-year PDs
between 25% and 30%, 31% of them actually defaulted within the
following year. A perfect model would have all points falling on the
diagonal line for which predicted PD and realized default rates match
exactly. Error bars at two standard deviations for the realized default
rates are also shown in each plot.

The plots in Figure 11 indicate that the default probabilities
generated by the model are reasonably accurate at predicting default
rates for banks over multi-year horizons. With respect to the two
standard deviation bars, most data predictions do not differ
significantly from the diagonal “perfect model” line. However, a
notable exception is that the bank model typically underestimates the
default rates for the second- and third-highest bins (i.e., the high
default 60%-70% bins). Further analysis revealed that the model
under-predicted the sudden surge of defaults during the financial crisis
of 2008 and 2009. Consider the left panel Figure 12 which displays the
historical annual high yield corporate default rates (left axis) and U.S.
bank default rates (right axis) from 1993 through 2012. Notice that the
high yield default rates varied substantially over the period, with high
rates early in the century. The banks had been relatively safe before
2008, with an average annual default rate of only 0.06% and even the
maximum during that period is only 0.34%. The right panel of Figure
12 plots average predicted and realized annual default rates from the
one-year bank model. The bank default models that are constructed
annually did not predict well the overall bank default rate in 2008 and
2009, the years of high bank defaults. More generally, the plot reveals
that PD levels from the bank model tend to trail observed annual PD
rates by one year. Note that the financial data for U.S. banks are

12

large.

published quarterly by the U.S. Federal Deposit Insurance
Corporation (FDIC). Thus, in practice, I plan to update the model
quarterly, potentially minimizing the lag in accurately predicting
annual default rates.
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Figure 11: Plots of Predicted and Obtained Bank Annual Default
Rates from Models for One to Five Years Out. Error Bars are Two
Standard Deviation Bands.
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Figure 12: Left: Historical Annual High Yield Default Rate and
Bank Default Rates From 1993 to 2012. Right: Model Predicted
Annual Bank Default Rate and Realized Bank Default Rates, 2001 —
2012 with Two Standard Deviation Error Bars.

Summary

In this paper, I develop a dynamic measure to overcome limitations
of the Merton-type structural models in predicting default
probabilities for financial firms. I built and tested adaptive statistical
models to estimate default probabilities for U.S. banks. As described in
detail, the models are logistic regression whose input variables are
selected and calibrated based on their past effectiveness at predicting
bank failures. Selection of variables in the model and their weights
were updated yearly using a “walk-forward” procedure. The model
predicts defaults at annual horizons from one to five years.
Performance of the models at discriminating between defaults and
non-defaults was evaluated for horizons of one to five years using a
sequence of annual walk-forward out-of-sample tests from 1992 to
2012. T also measured the ability of the models to predict absolute
default rates from one to five years and, except for underestimating the
high bank default rates during the financial crisis, the models
performed well at estimating the annual bank default rates. In general,
the models perform favorably at predicting defaults, with a 97%
accuracy ratio (AR) at one year prior to default, and decreasing, but
still above-chance predictive power out to five years. The models are
designed to be updated on an annual basis, but updated financials for
inputs to the model are available from the FDIC on a quarterly basis.

For example, if one multiplies all PDs by 10 the CAP curves will not change, but the absolute PD levels implied by the models will be too
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