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Abstract
This study presents the application of Artificial Intelligence (AI) techniques to predict the morphology of nanofibers 

produced by needless electrospinning method. Two straight and parallel copper wire electrodes electrospinning 
method was used to produce nanofibers. Using digital image processing software Image Journal, Mean Nanofiber 
Diameter (MFD) and Nanofiber Diameter Standard Deviation (NFSD) have been measured and recorded. Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS), Support Vector Machines (SVMs) and Gene Expression Programming 
(GEP) methods were used for prediction of electrospun nanofiber morphology. Prediction results and experimental 
were compared. It was found that SVMs model has better predictive power in comparison with both ANFIS and Gene 
Expression Programming models. However, results provided by both GEP and ANFIS are also acceptable. The 
relative importance of process parameters as contributor to the nanofiber morphology was also investigated. It was 
found that nanofiber morphology was strongly or weakly dependent on processing parameters.

Keywords: Nanofiber; Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS); Support Vector Machines (SVM)s; Artificial Intelligence (AI)

Introduction
Morphological properties of electrospun fibers such as fiber 

diameter and fiber diameter distribution are considered as the main 
parameter for quality control and small fiber diameter and higher fiber 
uniformity are desired in many applications. These properties depend 
on many different factors including processing parameters, polymer 
solution properties, and ambient parameters. However, one major issue 
with the process is the lack of a functional model that can link processing 
parameters and polymer solution properties to fiber morphology (fiber 
diameter and its distribution), which could allow these variables to be 
easily identified based on desired fiber properties. The electrospinning 
process is complex with the resulting fiber diameter being influenced 
by numerous material, design, and operating parameters. Therefore 
predicting the electrospun fiber morphology is very important from 
a technological point of view. Recent publications [1-5] provides a 
review of significant previous modeling attempts, as well as a detailed 
analysis of the effect of processing parameters and solution properties 
on the electrospinning process. Thompson’s work identified important 
parameters but did not bridge the gap from a mathematical model to a 
functional model that could predict fiber diameter based on processing 
and solution conditions, a gap that remains to be filled. Response 
Surface Method (RSM), which is an empirical technique, has been used 
to establish the processing parameter-to-electrospun fiber diameter 
relationship in a few recent works. Ziabari et al. [6] used response 
surface methodology to predict the electrospun morphology based on 
processing variables. They established the quadratic models for mean 
fiber diameter and standard deviation of fiber diameter in terms of 
processing variables. They concluded that more uniform fibers were 
obtained at lower concentrations, lower voltage, and longer working 
distance. The flow rate was found to have an optimum value in order to 
form uniform fibers. The optimum flow rate value was affected by the 
other variables. The results have also shown that the relationship between 
electrospinning parameters and electrospun fiber morphology was 
nonlinear. Since the relationship between electrospinning parameters 
and electrospun fiber morphology is nonlinear, it is very difficult to use 
conventional techniques such as regression to predict morphology of 

electrospun fiber. However, in complex multi-variate problems such 
as electrospinning process, empirical model is not suitable. In fact, the 
relationship between electrospinning parameters and electrospun fiber 
morphology is nonlinear, therefore it is very difficult to use empirical 
techniques such as regression to predict morphology of electrospun 
fiber. One of the difficulties in regression model is that usually a linear 
model should be predefined. Intelligent control is a rapidly developing 
field with great practical importance and potential. An intelligent 
control system emerged from artificial intelligence and computer-
controlled systems as an interdisciplinary field. 

 A neuro-fuzzy system can serve as a nonparametric regression tool, 
which models the regression relationship non-parametrically without 
reference to any pre-specified functional form [7-12]. Figure 1 shows the 
model linking processing parameters to electrospun fiber morphology. 
The main objective of this chapter is to use these new methodologies 
to predict the electrospun fiber diameter using the polymer solution 
properties and processing parameters. Such an approximation may 
then be used to determine the process and material parameters for a 
targeted fiber diameter. In this study, Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS) and Support Vector Machines (SVMs) models were 
used to establish a relationship between PEO nanofiber diameter and 
electrospinning processing parameters. The predictive performances 
of the two models were estimated and compared to those of Gene 
Expression Programming (GEP). These approaches allowed finding 
information hidden in the data and their performance could be better 
than that of RSM. 
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Materials and Methods
Polyethylene oxide (PEO) is the polymers used in the completion of 

this work. Polyethylene oxide (PEO), with an average molecular weight 
(Mw) of 1,000,000, was obtained from Shanghai Liansheng Chemical 
(China) and used as received. Different PEO solution concentrations 
were prepared by dissolving the PEO in distilled water and each 
solution was stirred until homogenization. Different PEO solution 
concentrations (4, 6, 8, 9, 10) wt% were used. Polyethylene oxide 
(PEO) was used as it is an easily processible polymer and has a known 
and very well documented history of being processed. It is a polymer 
that is widely used in many biomedical applications and thus it was 
desirable to ascertain the ability of this polymer to be utilized in the 
electrospinning technique. The high voltage power supply FI 80-L was 
obtained from Fudan Middle School, Shanghai (China).

Electrospinning method

In this process, two straight and parallel copper wire electrodes 
mounted on a rotating metal spindle which is connected to a belt drive 
that is powered by a DC motor to allow for variable speed control. Figure 
2 shows the setup of the method. As the spindle rotates along with the 
two copper wires, the wires are drawn through the polymer solution 
bath. The metal spindle is connected to a high voltage power supply 
(positive electrode) and the collector plate is connected to ground. As 
the wires move through the polymer solution bath, solution is entrained 
on the wires, resulting in a thin film of solution coating the wires. The 
forces such as gravity, surface tension, viscosity and inertia acting on 
polymer solution determine the amount of the solution entrained on 
the wire. Due to Plateau-Rayleigh instability, the coating breaks up into 
individual droplets of charged polymer solution on the wires. At the 
sufficiently high local electric field, the individual drops deform and 
jets are produced from the droplets, giving rise to a form of free surface 
electrospinning. As the wires rotate, electrospinning continues to occur 
until the supply of polymer solution is depleted plate.

Experimental design

Spinning distance (D=40, 50, 60) cm, applied voltage (V=50, 60, 
70) kV, wire electrodes diameter (WD=0.37, 0.43, 0.55) mm, rotation 
speed (RS=6, 9, 12) rpm were considered in this study. Fractional 
factorial design, six factors at three levels (3^6-3=27) runs were used. 
All experiments have been carried out at a temperature of T=27.5 ± 
1.5℃ and under normal atmospheric pressure. Relative humidity 
varied between (20-55)% during experiment. Each experiment process 
was run for twenty-thirty minutes.

Characterization of nanofibers 

Fiber formation and morphology of the electrospun PEO fibers were 
determined using a Scanning Electron Microscope (SEM). Samples 
were cut to obtain the SEM images Fiber diameters were measured with 
digital image processing software Image J [13] (National Institutes of 
Health, USA). This program measures the number of pixels and scales 
the length according to the calibration provided by the user. First the 
scale was set. Then, pixels between two edges of a fiber perpendicular 
to the fiber axis were counted. Each fiber diameter was measured at 
the location where the fiber was identified as a single fiber. There may 
be up to half a pixel error in both directions which should turn out up 
to 1-pixel error in measuring fiber diameter. The number of the pixels 
was converted to nanometers (nm) using the scale and the resulting 
diameters were recorded. Diameters of fibers of each SEM image were 
measured and average of fiber diameters (MFD) along with standard 
deviation of Fiber Diameters (FSD) values were then calculated.

Data collection

The experimental results data produced with two rotating straight 
and parallel wire electrodes electrospinning methods were used to 
train the models. The results are summarized in Table 1. A total of 26 
data pairs were used. The data has been divided into two sets, namely, 
training (estimating) and checking (validation) data sets. Table 2 
shows the processing parameters selected. Five processing parameters: 
solution concentration (C), working distance (D), applied voltage (V), 
wire diameter (WD) and rotation speed (RS) been chosen based on their 
high influential degree on the electrospun fiber morphology. Processing 
parameters were used as inputs (independent variables). Mean 
nanofiber diameter (MFD) and a standard deviation of electrospun 
fiber diameters (FSD) were the targets (outputs). For implementation, 
Commercial DTREG software [14] was used to execute SVMs and GEP 
while Matlab software [9] was used to execute ANFIS model.

Prediction of nanofiber morphology with ANFIS: Details 
on ANFIS can be found in reference [9]. For implementation, the 
Fuzzy Toolbox in MATLAB software, which provides functions of 
constructing, editing and training of ANFIS, was employed. Since the 
input data set has a high dimension, we used clustering function as a 
pre-processor to ANFIS (Figure 3) for determining the initial rules. 
An important advantage of using a clustering method to find rules is 
that the resultant rules are more tailored to the input data than they 
are in a FIS generated without clustering. This reduces the problem 
of combinatorial explosion of rules when the input data has a high 
dimension. The ANFIS used here contains the 32 rules (32=25) with 
2 membership functions being assigned to each input variable. In 
the experiment, there was totally dataset of 26 pairs. These data were 
divided into two sets: training (75%), and test (25%) in order to meet 
the requirements of generalization. After the 10 epochs, the final results 
are expressed by the Root Mean Squared Error (RMSE). At the end of 
training, RMSE was 1.66178 and was quite small but the final comment 
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Figure 1: Two straight wires electrospinning setup.
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Figure 2: Model linking electrospinning processing parameters and 
electrospun fiber morphology.
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on overall prediction performance should be made by analyzing the 
testing results. 

Prediction of nanofiber morphology with Support vector 
machines: The foundations of Support Vector Machines (SVM) 
have been developed by Vapnik [10], and are gaining popularity due 
to many attractive features, and promising empirical performance. 
The formulation embodies the Structural Risk Minimization (SRM) 
principle, as opposed to the Empirical Risk Minimization (ERM) 
approach commonly employed within statistical learning methods. 
SRM minimizes an upper bound on the generalization error, as 
opposed to ERM which minimizes the error on the training data. It is 
this difference that equips SVMs with a greater potential to generalize, 
which is our goal in statistical learning. Details on SVMs are found in 
[10].

As the problem is nonlinear, we first apply the RBF kernel function 
to map the data into a different space where a hyperplane can be used 
to do the separation. The RBF function nonlinearly maps samples 
into a higher-dimensional space, so, unlike the linear kernel, RBF can 
handle the case when the relation between class labels and attributes are 
nonlinear. Furthermore, the linear kernel and sigmoid kernel behave 
like RBF for certain parameters [10-12]. To find the optimal parameter 

we used grid and pattern search methods. As the complexity increases 
by the number of support vectors, SVM is constructed through trading 
off decreasing the number of training errors and increasing the risk 
of over-fitting the data. Since SVM captures geometric characteristics 
of feature pace without deriving weights of network from the training 
data, it is capable of extracting the optimal solution with the small 
training set size. We conducted grid search and pattern search methods 
using ten-fold cross-validations on the training data and reported the 
validation results. One subset is chosen for testing and remaining 9 
subsets are used for training and the process is repeated until all the 
subsets are chosen for the testing. For implementation, the DTREG 
software was used to execute the SVM. We used both grid and pattern 
search methods on ε=0.001, 165.684766 and 0.41591837, p=21.0604513 
for MFD,ε=0.001, 43.4424563 and 102.857194, p=21.6661033 for FSD, 
both using 10-folds cross-validation. The results including the number 

# WD V D C RS RH Min Max MFD FSD
C1 0.43 40 50 6 6 42 247 667.57 358.91 99.11
C2 0.43 40 50 6 9 42 236 396.69 299.4 44.39
C3 0.43 40 50 6 12 42 234 432.71 321.87 63.41
C4 0.43 50 60 8 6 25 329 552.49 449.12 66.46
C5 0.43 50 60 8 9 25 480 817.81 618.59 106.15
C6 0.43 50 60 8 12 25 313 677.4 513.61 88.35
C7 0.43 60 70 10 6 45 236 420.73 308.35 47.42
C8 0.43 60 70 10 9 40 281 676.15 383.96 97.96
C9 0.43 60 70 10 12 46 288 731.1 530.79 160.36
C10 0.55 40 60 8 6 46 349 662.98 509.39 94.5
C11 0.55 40 60 10 9 42 165 890.86 365.54 213.12
C12 0.55 40 60 10 12 42 215 874.77 533.14 218.1
C13 0.55 50 70 6 6 35 304 594.99 401.91 82.57
C14 0.55 50 70 6 9 35 281 480.23 393.97 55.6
C15 0.55 50 70 6 12 32 221 678.41 350.1 119.48
C16 0.55 40 60 10 6 40 444 614.14 508.88 65.68
C17 0.55 60 50 8 9 20 537 809.28 636.58 110.63
C18 0.55 60 50 8 12 20 199 747.16 430.41 140.79
C19 0.37 40 70 8 6 20 576 825.11 704.46 79.12
C20 0.37 40 70 8 9 20 376 668.29 550.55 114.49
C21 0.37 40 70 8 12 20 258 478.82 316.48 56.84
C22 0.37 50 50 10 6 55 233 461.51 336.3 64.04
C23 0.37 50 50 10 9 45 152 334.15 267.9 49.15
C24 0.37 50 50 10 12 42 215 665.23 377.53 167.85
C25 0.37 60 60 6 6 30 266 444.34 348.4 57.1
C26 0.37 60 60 6 9 28 221 479.7 321.01 80.12
C27 0.37 60 60 6 12 28 NaN NaN Nan NaN

Table 1: Electrospinning conditions and statistics of responses for two straight wires electrospinning (Method C).

Processing parameters Description of parameters Units
C Concentration C (wt %)
D Distance cm
V Applied voltage kV

WD Wire diameter mm
RS Rotation speed rpm

Table 2: Processing parameters selected.
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Figure 3: ANFIS architecture.



Page 4 of 6

Citation: Nurwaha D, Wang X (2019) Modeling and Prediction of Electrospun Fiber Morphology using Artificial Intelligence Techniques. Global J 
Technol Optim 10: 237. 

Volume 10 • Issue 1 • 1000237Global J Technol Optim, an open access journal
ISSN: 2229-8711

of support vectors (Figure 4) and analysis run time are reported in 
Table 2. 

Prediction with Gene expression programming: More details 
on GEP are found in Ferreira’s work [14]. It is a development of 
genetic algorithms and genetic programming. It uses a population of 
individuals, selects them according to their fitness and luck of roulette 
wheel, and introduces genetic variation in the individuals using various 
genetic operators resulting in the development of an expression, which 
describes the data that is input. GEP evaluation was performed using 
10-fold cross-validation. The Generations required to the training of 
model, the complexity of model before simplification, the complexity of 
model after simplification, the generations required for simplification 
and the number of evaluations of the fitness function were optimized 
on trial and error based. The optimal values of these parameters for both 
MFD and FSD are given in Table 3. The mathematical expressions, as 
the models to represent the interactions between the different variables 
in consideration, were generated for both MFD and FSD and are given 
by equations (1) and (2), respectively:

( ) ( )( ) ( )

( )( )
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WD
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From equations (1) and (2), one can see that the relationship 
between processing parameters and nanofiber diameter is nonlinear.

Validation and comparison of prediction performances of 
the three models: After the training, all the three models have been 
subjected to the unseen testing data. The goal was comparing ANFIS, 
SVMs and GEP models. Three methods of comparison were used to 
judge the performances of the three models: the Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). RMSE and MAE are the measures of the 
deviation between the actual and predicted values. The smaller the 
values of RMSE and MAE, the closer are the predicted values to the 

actual values. These three functions are widely used in evaluating the 
effect of fitting. All these methods of comparison are defined as the 
following:

n 2
i pi=1

1RMSE= (o -o )
n∑

                   (3)

n

i p
i=1

1MAE= |o -o |
n∑                   (4)

n
i p

i=1 i

|o -o |1MAPE= ×100% 
n |o |∑                     (5)

where n is the number of pairs; Oi is i-th desired output Op is i-th 
predicted value and, is the mean of a dependent. As it can be seen from 
Tables 4 and 5, SVMs have provided a good performance compared to 
both ANFIS and GEP.

Results and Discussion
Importance of processing parameters on electrospun fiber 
morphology

Figures 5-8 show the order of computed importance of the 
individual processing parameter for the electrospun fiber morphology 
obtained by each method. The models determine the most important 
processing parameter. From figures one can see that the electrospun 
fiber morphology is influenced, to a greater or lesser degree, by 
processing parameters. Wire Diameter (WD) is ranked first in 
importance as a contributor to both MFD and FSD by both SVM and 
GEP models. Polymer solution concentration (C) may contribute to 
both MFD and FSD to a lesser degree. In fact, in the range of polymer 
solution concentrations where a polymer solution is spinnable, the 
polymer solution concentration may have a little influence in ℃ the 
variation of electrospun fiber diameter.
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Figure 4: Structure of the support vector machines.
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Figure 5: Computed importance (%) of processing parameters on MFD by 
SVMs.

Nanofiber 
diameter 
property

NCVF NSV RMSE MAE MAPE ART

MFD 10 17 41.26 36.92 9.21 04:00.0
FSD 10 15 27.28 21.54 24.33 00:06.2

Table 3: Processing parameters selected.

Fiber properties GR1 GR2 CM1 CM2 NE
MFD 1140 107 56 27 230900
FSD 1910 1 75 30 110150

Table 4: GEP optimal parameters for both MFD and SDFD.

Statistical parameter ANFIS model SVMs model GEP model
RMSE 55.8 48.27 49.98
MAE 50.1 36.81 40.12

MAPE 35.22 42.56 45.07

Table 5: Comparison analysis of the prediction performances of the three models 
for FSD.
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In this study, we have evaluated the electrospun fiber diameter with 
adaptive neuro-fuzzy inference systems (ANFIS) (Figure 3), Support 
Vector Machines (SVMs) and Gene Expression Programming (GEP). It 
was found that SVMs model has better predictive power in comparison 
with both ANFIS and Gene expression programming models. However, 
results provided by both GEP and ANFIS are also acceptable. These 
methods provide the advantage of modeling a nonlinear and complicated 

system without the need of finding suitable functional forms for the 
system, and their neural network learning ability also equips them with 
high efficiency in nonlinear system modeling. The relative importance 
of process parameters as contributor to the fiber morphology was also 
investigated. It was found that nanofiber morphology was strongly or 
weakly dependent on processing parameters. The results of this study 
need to be repeated and compared to others from similar analysis. As 
we know that the relationship between processing parameters and 
nanofiber diameter is nonlinear, these new artificial intelligent methods 
should be potentially better data analytic methods that need to be 
explored more in-depth to assess the practical impact of processing 
parameter on the electrospun nanofiber morphology and compared to 
more techniques that are already in use in nanofiber engineering.

Conclusion 
In this study, we have evaluated the electrospun fiber diameter 

with Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Support 
Vector Machines (SVMs) and Gene Expression Programming (GEP). 
It was found that SVMs model has the better predictive power in 
comparison with both ANFIS and Gene Expression Programming 
models. However, results provided by both GEP and ANFIS are also 
acceptable. These methods provide the advantage of modelling a 
nonlinear and complicated system without the need of finding suitable 
functional forms for the system, and their neural network learning 
ability also equips them with high efficiency in nonlinear system 
modelling. Relative importance of process parameters as contributor 
to the fiber morphology was also investigated. It was found that 
nanofiber morphology was strongly or weakly dependent on processing 
parameters. The results of this study need to be repeated and compared 
against others from similar analysis. As we know that the relationship 
between processing parameters and nanofiber diameter is nonlinear, 
these new artificial intelligent methods should be potentially better data 
analytic methods that need to be explored more in depth to assess the 
practical impact of processing parameter on the electrospun nanofiber 
morphology and compared to more techniques that are already in use 
in nanofiber engineering.
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SVMs.
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