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Introduction
Solar activity, as indexed by sunspots, is observations describing 

the average number of sunspots observed annually [1]. This series 
is highly asymmetric and has a cycle of length varying from 7 to 14 
years [2]. Several models are fitted to sunspot series in mathematical, 
statistical and solar physical litrecheres in order to capture their main 
features as well as prediction [3]. This series consists of 317 observations 
describing the number of sunspots observed annually between 1700 
and 2015 [4]. The data taken from the Royal Observatory of Belgium, 
SILSO, it is highly asymmetric as shown in Figure 1. 

The main feature of this series is a cycle of activity varying 
in duration between 9 and 14 years, with an average period of 
approximately 11 years [5]. The series exhibits another feature, namely 
different gradients of "ascensions" and "dissensions", i.e., in each cycle 
the rise to the maximum has steeper gradient than the fall to the next 
minimum [6-8]. 

The era of linear modeling of sunspot time series began by Yules’ 
autoregressive model in 1927. Box and Jenkins [1] fitted a second order 
linear autoregressive model, AR(2), to the period 1770-1869. Tong and 
Lim [8] fitted a non-linear model to the period 1700-1920. Subba and 
Gabr [3] have fitted a bilinear model to the period 1700-1920. Thanoon 
(1988) fitted a subset model of the model of Tong and Lim [8]. The 
eventual forecasting function of that model produces an asymmetric 
limit cycle of period 22 years. The limit cycle consists of two sub cycles 
whose "rise" and "fall" times are (5,6) and (4,7) years, respectively. 
Thanoon [5] who fitted a threshold model with piece wise non-linear 
dynamic to the same period 1700-1920 does another modification. The 
eventual forecasting function of that model has periodic nature but 
not systematic. It has a chaotic behavior, that behavior might be an 
indicator of chaotic behavior of the solar system. An adaptive spline 
threshold model fitted to the same period by Lewis and Stevens [2]. 
This model produces an asymmetric limit cycle of period 137 years. 
Li (2001) focused on predicting the magnitudes of the next cycle 
maximum as well as the next cycle minimum and the time from the 
initial minimum of a cycle to its maximum. 

In this paper, we fit five different models to the complete sunspot 
series 1700-2015, one linear and four nonlinear models. These models 
are a delay model, a Henon map, a linear autoregressive model, and 
two non-linear autoregressive models. Orders of linear and non-linear 
autoregressive models are fixed at 11 and the first 20 observations are 
considered as initial values in all fitted models. The periodic property of 
sunspot series is studied through these models. 

The Fitted Models 
Model I

Delay difference equations are a type of difference equations in 
which the present of the unknown function at a certain time is given 
in terms of the values of the function at previous times. Many delay 
models are fitted to the data using the well-known least-squares 
method. Ignoring the noise term, the following delay model is then 
identified:

x(n)=0.0126 × (n-1) [ 1- 0.0037 × (n-8)] × (n-9).                             (1) 

A comparison between the real data and the obtained data from the 
fitted model is shown in the next (Figure 2). 

Using the forward Euler scheme; 

( ) ( )~ 1(t)
t nh

x n x ndx
dt h=

− −
≈

the previous model can be viewed as a discrete analogue of the following 
one-dimensional delay differential; 

( ) ( ) ( )(t) [ x 8 ]x 9dx x t t t
dt

α β µ= + − −

where μ,β,α are some constants. The study of the solution of this delay 
equation is outside the scope of this paper. 

Model II

The following dynamical system model, known as Henon map, is 
fitted to the series: 

x(n)=12.3745+y(n)- 0.00031616x(n-1)2,            	               (2a)

where

y(n)=0.8849x(n-1).                   		   	               (2b) 

A comparison between the real data and the obtained data from the 
fitted model is shown in the next (Figure 3). 
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Abstract
This paper deals with the modeling of sunspot time series 1700-2015. Different models are fitted from four 

different classes of mathematical and stochastic models in order to describe this series. A special attention is made 
for the periodicity analysis of this series through these models as well as their main properties. 
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Model III

An autoregressive (AR) model is a form of a stochastic difference 
equation; it is a representation of a time series such that the output 
variable depends linearly on its own previous values and on a stochastic 
term known as the “noise term". 

The following linear autoregressive model of order 11, AR(11), is 
fitted to sunspot data 1700-2015: 

x(n)=12.4386 +1.1517 x(n-1) -0.4034 x(n-2)- 0.1423 x(n-3)+ 0.1066 

x(n-4)- 0.0774 x(n-5)+ 0.0067 x(n-6)+ 0.0288 x(n-7)- 0.0453 x(n-8)+ 
0.2024 x(n-9)+ 0.0032 x(n-10)+ 0.0146 x(n-11) +∊(n) (3) where ∊(n) 
is a noise term. 

Ignoring the noise term, this model can be written as: 

( ) ( ) ( ) ( )
11

1
0

i
x n a a i x n i

=

= + −∑
Where the values of the autoregressive coefficients a(0),...,a(11) are 

shown in the following (Table 1). 

A comparison between the observed and the fitted series by the 
AR(11) model is shown in the following (Figure 4). 

Threshold autoregressive models are non-linear time series models. 
These models are an extension of autoregressive models in order to 
allow for higher degree of flexibility in model parameters through a regime 
switching behavior. These models consist of more than one autoregressive 
parts (regimes), each for a different regime, Tong [6], Tong [7]. 

Figure 2: Real sunspot data and the fitted model (1).

Figure 3: Real sunspot data the fitted model (2).

Figure 4: The observed and fitted series by the AR(11) model.
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Figure 1: Sunspot time series 1700-2015. 

i 0 1 2 3 4 5 
a(i) 12.4386   1.1517  -0.4034  -0.1423   0.1066  -0.0774   

 
i 6 7 8 9 10 11 

a(i) 0.0067   0.0288  -0.0453   0.2024   0.0032   0.0146 

Table 1: Autoregressive coefficients of the fitted AR(11) model.
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Where 2zσ =569.2. 

The graph of this power spectral density is shown in the following 
(Figure 5). 

It is clear that there is a dominant peak at the frequency f=0.59 
radians, which corresponds to the frequency ω=0.59/2=0.0939 cycles 
per year. The corresponding period is P=1/0.0939=10.6496 years per 
cycle. 

 We may investigate the periodicity of sunspot series through 
the AR(11) model. It is known that an AR model could generate the 
pseudo-periodic behavior in the process when it has complex roots, 
Priestley (1981, P. 131). The characteristic equation of the AR(11) 
model has one real root, 0.9389, and the following ten complex roots: 

0.8077 + 0.5439i 

0.8077 - 0.5439i 

0.3057 + 0.7755i 

0.3057 - 0.7755i 

-0.7206 + 0.2679i 

-0.7206 - 0.2679i 

-0.2702 + 0.6915i 

-0.2702 - 0.6915i 

-0.0163 + 0.2687i 

-0.0163 - 0.2687i 

In order to investigate the periodicity of this series we consider the 
decomposition of the autoregressive operator in the following table. 
Roots of the characteristic equation are given in column (1). For real 
root r, the first order factor 1-r-1is given in column 2,  is the backward 
shift operator. For a pair of complex roots, the factor in column 2 is the 
associated second order factor, i.e. the factor associated with the roots 
a ± bi which is: 

2
2 2 2 2

2 11 a B B
a b a b

− +
+ +

. 

In column (3) the frequency, in cycles per year, associated with 
each of these factors is given. For real roots this frequency is zero if 

Orders of difference equations are fixed at 11, two threshold 
autoregressive models to sunspot series 1700-2015 using least square 
method. The first model consist of two regimes and denoted by TAR(2; 
11, 11), while the second consist of three regimes and denoted by 
TAR(3; 11, 11,11). 

Model IV

Ignoring the noise terms, the fitted TAR(2; 11, 11) model is written as: 

( ) ( ) ( ) ( ) ( ) ( )
11

[J ] [J ]

1
0t t

i
x n a a i x n i

=

= + −∑
where J(t) is an indicator variable defined as: 

1;x(n d) r
(t)

2;x(n d) r
J

− ≤
=  − >

where d is the delay time and r is a threshold. The estimated values 
of the delay time and the threshold are d=3 and r=78. The estimated 
autoregressive coefficients a[J(t)](0),...,a[J(t)] are shown in the following 
(Table 2). 

Model V

Ignoring the noise terms, the deterministic part of the fitted TAR(3; 
11, 11, 11) model is written as: 

( ) ( ) ( ) ( ) ( ) ( )
11

[J ] [J ]

1
0t t

i
x n a a i x n i

=

= + −∑
where J(t) is an indicator variable defined as: 

( )

1

1 2

.3

2; 1;x(n d) r
(t) x(n d) r

3;
J r

x n d r

 − ≤


= < − >
 − >

where d is the delay time and r1,r2 are thresholds. The estimated values 
of the delay time and the thresholds are d=2, r1=40 and r2=102. The 
estimated autoregressive coefficients a[J(t)](0),...,a[J(t)](11) are shown 
in r the following (Table 3). 

 The following Table 3 gives the residuals variances, the values 
of the Bayesian information criterion, BIC, as well as the long term 
behavior of each model. 

According to the BIC criteria, the best model is the AR(11) which 
has the minimum value. 

Investigation of Periodicity of Sunspot Series
We may find the spectral density function of the sunspot series 

based on the fitted AR(11) model, see; e.g.. Priestly (1981). 

J(t) 1 2 
a[J(t)] (0) 13.2617 12.4626   

a[J(t)] (1) 1.3584 0.6607   
a[J(t)] (2) -0.7629 0.0739  
a[J(t)] (3) 0.0495 -0.1202  
a[J(t)] (4) 0.1656 -0.0345  
a[J(t)] (5) -0.2546 -0.0591  
a[J(t)] (6) 0.0366 -0.0167   
a[J(t)] (7) 0.0732 0.0993  
a[J(t)] (8) 0.0375 -0.1379   
a[J(t)] (9) 0.0739 0.3165  

a[J(t)] (10) 0.011 -0.1436   
a[J(t)](11) 0.0377 0.1244 

Table 2: Estimated autoregressive coefficients of the TAR(2; 11, 11) model.

J(t) 1 2 3 
a[J(t)] (0) 28.5413 0.0959 20.1049 
a[J(t)] (1) 0.5630 -1.0536 -1.5793 
a[J(t)] (2) -0.0920 -0.3234 1.0944 
a[J(t)] (3) -0.1483 -0.0369 0.0174 
a[J(t)] (4) -0.0267 0.0092 -0.3129 
a[J(t)] (5) 0.1517 -0.0559 0.3619 
a[J(t)] (6) 0.0885 0.1307 0.0932 
a[J(t)] (7) -0.0319 0.1436 -0.0912 
a[J(t)] (8) 0.1944 0.0851 0.1410 
a[J(t)] (9) 0.2459 0.1515 -0.2698 

a[J(t)] (10) 0.1145 0.0377 0.1909 
a[J(t)](11) 0.0142 0.0004 0.1360 

Table 3: Estimated autoregressive coefficients of the TAR(3; 11, 11, 11) model.
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the root is positive and 0.5 if the root is negative. For a pair of complex 
roots with associated factor 1-φ1B-φ2B

2, the frequency is given by: 

Ω=cos-1[φ1/2]

1
1 2/ 2[ ] / 2cos φ φ π−Ω = −

In column (4) the period, in years per cycles, p=ω-1, is given. The 
last column of Table 4 indicates the location of each of the roots with 
respect to the non-stationary region, which are given by 

2 2a b+  

The harmonic nature of the fitted AR(11) model to the data is due 
to the fact that the characteristic equation of this model associated with 
the autoregressive operator has a pair of complex roots near the unit 
circle. From the last (Table 5), we note that the pair of complex roots 
associated with the frequency ω=09738 cycle per year is very close to 
the unit circle while no other roots are equally as close. Hence, the 
approximate 11 year cycle of sunspot series is detected by the AR(11) 
model. 

Discussion 
The cyclical nature as well as the eleven years period of the sunspot 

time series has been captured by the three time series models: AR(11), 
TAR(2; 11, 11) and TAR(3; 11, 11, 11). 
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Figure 5: Spectral density function of sunspot series (1700-2015) based on the AR(11) model.

Model Residuals Variance BIC Long term behaviour 
Delay model 1922.4 2242.0 Limit point of 144.2 

Henon map model 1276.3 2121.1 Limit point of 86.8 
AR (11) 569.2 1939.8 Limit Point of 80.6 

TAR (2; 11, 11) 503.5 1971.9 limit cycle of period 11 years 
with ascend periods of 4 years and descend 

periods of 7 years. 
TAR (3; 11, 11, 11) 459.3 2013.0 Chaotic Behavior 

Table 4: A Comparison between the fitted models to sunspot series (1700-2015). 

(1) Roots (2) ω (3) Frequency 
(cycles per years) 

(4) Period 
(years per cycles) (5) 2 2a b+  

9809.0 1-1.0651B 0  ∞ 9809.0 
0.8077 ± 0.5439i 1-1.7036B+1.0546B2 0.0943 10.6019 0.9738 
0.3057 ± 0.7755i 1-0.8799B+1.4392B2 0.1902 5.2566 0.8336 
-0.7206 ± 0.2679i 1- 2.4384B+1.6919B2 0.4434 2.2556 0.7688 
-0.2702 ± 0.6915i 1-0.9804B+1.8143B2 0.3093 3.2333 0.7424 
-0.0163 ± 0.2687i 1-0.4499B+13.7997B2 0.2596 3.8514 0.2692 

Table 5: Decomposition of the autoregressive operator of the fitted AR(11) model.

Year AR(11) TAR(2; 11, 11) TAR(3; 11, 11) 
2016(*) 39.8 51.4 56.7  
2017 19.8 32.9 39.5  
2018 17.0 24.9 28.2  
2019 21.6 23.8 30.0  
2020 42.6 41.6 42.3  
2021 66.6 67.8 60.8  
2022 86.8 92.5 80.4  
2023 103.1 109.4 93.0  
2024 104.2 100.6 98.5  
2025 92.1 89.4 91.9  
2026 71.1 70.1 80.9  

Table 6: Predicted sunspot numbers for the next 11 years from the fitted time series 
models.
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We may also investigate the periodicity of sunspot series through 
the effectual forecasting function (eff). This function is obtained by 
generation the deterministic part of the model (by ignoring the noise 
terms) using last values of the series as initial conditions. 

The effectual forecasting function of the TAR(2; 11, 11) model gives 
as limit cycle of period 11 years with ascend periods of 4 years and 
descend periods of 7 years, as shown in next (Figure 6). 

On the other hand, the effectual forecasting function of the TAR(3; 
11, 11, 11) model has chaotic behavior, as shown in next (Figure 7). 

Long term behavior of sunspot number series from the fitted 
TAR(3; 11, 11, 11) model.

The following Table 6 shows a comparison between the prediction 
performances for the next 11 years based on the fitted time series 
models. 

References

1.	 Box GEP, Jenkins GM (1970) Time Series, Forecasting and Control, Holden-
Day, San Francisco. 

2.	 Lewis PAW, Stevens JG (1991) Nonlinear modelling of time series using 
multivariate adaptive regression splines (MARS). Journal of the American 
Statistical Association 86: 864-77. 

3.	 Subba RT, Gabr MM (1984) An Introduction to Bi-spectral Analysis and Bilinear 
Time Series Models, Lecture Notes in Statistics.

4.	 Thanoon BY (1988) Subset threshold auto regression with applications. Journal 
of Time Series Analysis. 

5.	 Thanoon BY (1990) A threshold model with piece-wise linear dynamics for 
sunspot series, Kuwait Journal of Science. 

6.	 Tong H (1983) Threshold Models in Non-linear Time Series Analysis. Lecture 
Notes in Statistics Springer-Verlag. 

7.	 Tong H (2011) Threshold models in time series analysis. In: Whittle P, 
Rosenblatt M, Hansen BE, Brockwell P, Samia NI, Battaglia F. Statistics & Its 
Interface 4: 107-136. 

8.	 Tong H, Lim KS (1980) Threshold Auto regression, Limit Cycles and Cyclical 
Data. Journal of the Royal Statistical Society Series B 42: 245-292.

Figure 6: The eventual forecasting function of the TAR(2; 11, 11) model. 
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Figure 7: The eventual forecasting function of the TAR(3; 11, 11) model. 
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