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Introduction
In anticancer drug development, demonstrating the antitumor 

activity of anticancer agents in preclinical animal model is important. 
Tumor volume is a commonly used endpoint of treatment efficacy in 
the evaluation of antitumor agents in such a preclinical animal tumor 
model. Intuitively, tumor volumes of animals treated on different 
antitumor agents may be used to compare the antitumor activity of 
the treatments. Appropriate analysis of tumor volume is therefore 
important in anticancer drug development. Survival analysis based 
on the tumor growth delay [1-3] is often conducted but it sometimes 
provides insufficient information or even invalid comparison of two 
treatments when both survival times are the same but tumor volumes 
are different. Another endpoint is tumor growth inhibition [2-5] that 
is generally assessed at a pre-specified time point. These approaches 
give valid results but can be inefficient because the information at other 
time points is discarded. An alternative approach is to fit tumor growth 
curves, such as multivariate analysis, regression modeling [6-8]. More 
recently, Liang and Sha [9] applied a parametric nonlinear mixed-
effects model [10,11] to analyze changes in tumor volume. To reduce 
the model’s assumptions and make the methods more general and 
robust, Liang [12] proposed a nonparametric method to model tumor 
volume. Although these approaches use the entire dataset, each has 
their own limitations. For example, parametric mixed-effects models 
[13-15] impose strong assumptions on underlying biology mechanisms 
and might produce coefficients with limited biological relevance [16], 
whereas nonparametric mixed-effects models impose no assumptions 
and may lose useful information when some information is available. 
In this paper, we suggest a compromised strategy and propose a 
semiparametric linear mixed-effects (SLM) model to fit tumor volumes. 

This research is motivated by the data from a drug combination 
tumor xenograft study generated in the Pediatric Preclinical Testing 
Program (PPTP) [17]. In this study, the human rhabdomyosarcoma 
cell line Rh30 was used to evaluate the therapeutic enhancement for 
the combination of rapamycin with cytotoxic agents. A total of 140 
SCID female mice were used to propagate subcutaneously implanted 
Rh30 tumors. After tumors grew to a certain size, tumor-bearing mice 
were randomized into 14different treatment groups with 10 mice per 
group. Cytotoxic agents were administered at their maximum tolerated 
dose (MTD), 0.5MTD or 0.63MTD or without concomitant rapamycin 
treatment. All mice were treated for 6 weeks and followed for another 
6 weeks without any treatment. The volume of each tumor is measured 

at the initiation of the study and weekly up to 12 weeks. Mice were 
euthanized usually when the tumor volume reaches four times its initial 
volume, thus resulting in incomplete longitudinal tumor volume data, 
as shown in Figure 1. 

We would like to establish statistical significance of between-
group differences in growth profiles and investigate the underlying 
biology. It is desirable to have interpretable parameters that represent 
characteristics of the growth curves, such as slope interpreted as the 
tumor growth rate. We also want the model to be flexible enough to 
allow different shapes of the curves. As in Figure 1, there is generally 
an upward/downward trend for a given group, but the growth 
patterns seem to be non-linear with different patterns among the 
groups. Straight-line regression models are likely to underfit the data. 
Polynomial regression or nonlinear models fit the observations better, 
but coefficient estimates can be sensitive to nonlinearity assumptions 
that one cannot evaluate robustly from the dataset in hand. In this 
case, it is reasonable to use a class of semiparametric models that keep 
the trend modeled parametrically, while letting the rest of the model 
be driven by data nonparametrically. Thus we may take advantage of 
both the flexibility of nonparametric models and interpretability and 
parsimony of parametric models. 

We use smoothing spline to fit the nonparametric component, which 
was initially developed for smooth interpolation [18]. Under statistical 
context it is more appealing to fit curves that pass near the noisy data, 
but are not restricted to interpolating exactly. The optimum curve 
under certain criteria can be found by solving a penalized least squares 
problem [19], which is discussed in the later Section. The idea is to find 
a curve that is a good compromise between fidelity and smoothness. 
A semiparametric model combining linear predictors and smoothing 
splines can be written in the form of Linear Mixed Effect models (LME) 
[20], which enables utilization of theory and computation power in the 
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Abstract
To analyze responses of solid tumor to treatments and to compare treatment effects with antitumor therapies, 

we applied semiparametric mixed-effects models to fit tumor volumes measured over a period. The population and 
individual nonparametric functions were approximated by smoothing spline. We also proposed an intuitive method for a 
comparison of the antitumor effects of two different treatments. Biological interpretation was also discussed. 
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field. Subject effects and within-subject variations can also be naturally 
accounted for under this LME framework. 

The paper is organized as follows. In Section 2, the SLM model 
is reviewed and the detail about constructing corresponding models 
is given. In Section 3, we apply this method to data from a cancer 
treatment trial and analyze the results, followed by a conclusion section. 

Model and Method
The general semi-parametric linear mixed-effects model assumes 

that [21]

y f X Zbβ ε= + + +                     (1)

where 1( ,..., )T
ny y y=  are responses; 1( ( ),..., ( ))T

nf f t f t=  is an unknown 
function of an independent variable t with t T∈  and f H∈ , a given 
Reproducing Kernel Hilbert Space (RKHS), X is the design matrix for 
some fixed effects with parameters , Zβ  is the design matrix for some 
random effects b, 2(0, );b N Dσ   and random errors 2(0, ).N Gσ∈  

  H can be decomposed orthogonally as 

,null penalizedH H H= +                                      (2)

where nullH  is a finite dimensional RKHS spanned by basis functions  

1( ),..., ( ),Mt tφ φ  and penalizedH  is also a RKHS with reproducing kernel

( , ).penalizedR s t   Functions in nullH  are not penalized and “preferred” 
over functions in  penalizedH . For more details on the topic see Aronszajn 
[22] and Wahba [23]. The estimate of  f  can be found by minimizing the 
following penalized sum of squared errors: 
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y f t x P f

n
β λ

=

− − +∑                   (3)

where penalizedP  is the orthogonal projection operator of f from H 

onto the penalizing space penalizedH . As a special case, cubic spline 
penalizes roughness by letting ,penalizedP f f ′′=  so linear functions 
are not penalized. λ  is the smoothing parameter controlling the 
balance between fidelity to original data and departure from non-
penalizing space .nullH  λ  can be estimated by automatic methods 
such as Generalized Cross-Validation (GCV), Unbiased Risks (UBR) or 
Generalized Maximum Likelihood (GML), and it is treated as constant 
once estimated. The three estimates behave similarly for large sample 
size [21]. GML is used to estimate the smoothing parameter in this 
paper. 

The function that minimizes (3) has the form 
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f t d t c tλ φ ξ
= =

= +∑ ∑                      (4)

where the coefficients 1( ,..., )T
Md d d=  and  1( ,..., )T

nc c c=  are solutions 
to 

( ) ,n I c Td yλ∑+ + =                    (5)

0,TT c =        

where ( ) ( , ),j penalized jt R t tξ =  1 1{ ( )}M n
n M i j i jT tφ× = ==  and  , 1{ , } .n

i j i jξ ξ =∑ = < >  

A more general form of (3) enables modeling of the covariance 
matrix using a weight matrix W, and different smoothing components 
with multiple RKHS decompositions , , :k k null k penalizedH H H= +  

21
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Minimizer to (6) is a simple extension to (4) and (5), and can be 
directly related [24,25] to the Restricted Maximum Likelihood (REML) 
solution of the following LME model 
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where ,( ) ( , ),kj k penalized jt R t tξ =  , 1{ , } ,n
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Bayesian credible bands are commonly used to evaluate smoothing 
spline fitted values [26] by assuming the following prior for f, 

1
2

1
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F t t U tζ φ δ
=
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where . .
1,..., (0, ),i i d

M Nζ ζ κ
 ( )U t  is a zero-mean Gaussian process 

with covariance function ( , ),penalized jR t t  iζ  and ( )U t  are independent 
and κ  and δ  are positive constants. p − values cannot be directly 
calculated because the distribution (of a function) under the null 
hypothesis is unknown. Such credible bands must be interpreted in an 
across-the-function fashion, and they cannot be used for describing 
features of the curve. Since we are estimating a function instead of a 
real-value parameter, the credible region should represent realizations  

( )f ⋅  of a stochastic process for a fixed time τ . The Bayesian credible 
bands, however, is based on the average coverage probability (ACP).
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Figure 1: Time has been normalized to [0,1] for computation purposes. 
A:Control B:Rapamycin C:Vincristine(VCR) MTD D:VCR MTD+Rapamycin 
E:VCR 0.5MTD F:VCR 0.5MTD+Rapamycin G:Cyclophosphamide (CTX) MTD 
H:CTX MTD+Rapamycin I:CTX 0.5MTD J:CTX 0.5MTD+Rapamycin K:Cisplatin 
(CDDP) MTD L:CDDP MTD+Rapamycin M:CDDP 0.63MTD N:CDDP 
0.63MTD+Rapamycin.



Citation: Xia C, Wu J, Liang H (2013) Model Tumor Pattern and Compare Treatment Effects Using Semiparametric Linear Mixed-Effects Models. J 
Biomet Biostat 4: 168. doi:10.4172/2155-6180.1000168

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 3 of 7

Volume 4 • Issue 4 • 1000168

where ( )f ⋅  is fixed,  t s  are randomly selected and ( , )kC tα  is the 

corresponding credible band at significance level α . ACP has been 
shown to be close to nominal coverage rate 1 α−  in simulations [27] 
and theoretical justification [28]. Note that this average coverage is 
weaker than pointwise coverage. 

 When comparing two groups with estimated functions 1̂( )f t  and  

2̂ ( )f t , the difference of these two groups can be derived 

1 2
ˆ ˆ ˆ( ) ( ) ( )difff t f t f t= −

      

with standard error 

2 2
1 2( ) ( ) ( ),diffse t se t se t= +     

  

where 1( )se t  and 2 ( )se t  are posterior standard errors of the fitted 
curves 1̂( )f t  and 2̂ ( )f t  respectively. A check for group difference can 
be performed by examining whether the credible band covers the 
horizontal zero line. Similar idea was once used in Bowman and Young 
[29] and Liang [30]. 

As can be seen from (6), the RKHS formulation makes it easy to 
model parametric and nonparametric components by manipulating 
the RKHS decomposition, and it combines various spline models 
under a unified framework. Smoothing spline ANOVA (SS ANOVA) is 
available with similar interpretation as ordinary ANOVA. Suppose the 
model space can be decomposed as in (2) and the estimated function is 
(4) with orthogonal basis 1( ),..., ( ),Mt tφ φ  and let   be the projection 
operator onto unpenalized subspace nullH  spanned by ( )v tφ   for 

1,..., ,v M=  and penalizedP  be the projection onto penalizedH , then the 
function can be written as 

10 0( )M penalizedf P P P f= + + + ⋅
                 (10)

ANOVA and linear regression can be seen as special cases of SS 
ANOVA by specifying their corresponding decompositions. For 
an SLM model with linear parametric component and cubic spline 
nonparametric component, assume the following model 

( , , ) ; 1, , ; ; [0,1],kwj j kwj k jy f k w t k K w B t= +∈ = ∈ ∈

   

where kwjy  is the observed tumor volume at time tj of mouse w in group  

k. For group k, denote Bk as the population from which the mice in 
group k were drawn and Pk as the sampling distribution. ( , , )jf k w t  

is the “true” tumor volume at time tj of mouse w in the population 
Bk, and k∈ ’s are random errors. ( , , )jf k w t  is a function defined on 

1 2{{1} ,{2} ,...,{ } } [0,1].KB B K B⊗ ⊗ ⊗ ⊗  Note that ( , , )jf k w t  is a 
random variable since w is a random sample from Bk. What we observe 
are realizations of this “true” mean function plus random errors. We use 
label  w to denote mice we actually observe. 

We define four averaging operators that project the function f onto 
modular structures constituting this SLM model: 
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Then we have the following SS ANOVA decomposition 
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= + − + + + − +
   

( ) ( ) ( )( 0.5) ( ),w k w k w kt s tα γ+ + − +                    (11)

which can be interpreted in parallel with the classical mixed models 
as follows: 0µ  is a constant, 0 ( 0.5)tδ −  is the linear main effect of 
time, 0 ( )s t  is the smooth main effect of time, kµ  is the main effect 
of group, ( 0.5)k tδ −  is the linear interaction between time and group, 

( )ks t  is the smooth interaction between time and group, ( )w kα  is the 
main effect of mouse, ( ) ( 0.5)w k tγ −  is the linear interaction between time 
and mouse, and ( ) ( )w ks t  is the smooth interaction between time and 
mouse. We can calculate the main effect of time as  0 0( 0.5) ( )t s tδ − +
, the interaction between time and group as ( 0.5) ( )k kt s tδ − + , and the 
interaction between time and mouse as ( ) ( )( 0.5) ( )w k w kt s tγ − + . The first 
six terms are fixed effects. The last three terms are random effects since 
they depend on the random variable  w. Depending on time only, the 
first three terms represent the mean curve for all mice. The middle three 
terms measure the departure of a particular group from the population 
mean curve. The last three terms measure the departure of a particular 
mouse from the mean curve of a population from which the mouse was 
chosen.

 For categorical variables, we can either estimate each level by 
shrinkage estimates, which reduce overall means squared error by 
penalizing departure from overall mean; or we can fit each level 
separately as fixed categorical covariates. In this study, it is beneficial to 
not penalize group difference because we are interested in comparing 
group differences. Both shrinkage and fixed-effects estimates can be 
fitted under the RKHS framework with different RKHS decompositions. 
Suppose we want to model time using cubic spline, the categorical 
variable group as fixed effects and shrink mouse factors toward 
constants (modeled as random effects), the fixed effects in Equation 
(11) can be re-written as 

0 0 0

0 0 0

( ) ( 0.5) ( ) ( 0.5) ( )
{ } { ( 0.5) ( 0.5)} { ( ) ( )}

k k k k

k k k

f t t s t t s t
t t s t s t

µ δ µ δ
µ µ δ δ

= + − + + + − +
= + + − + − + +

             (12)

Analysis of Xenograft Tumor Data
In this section, we use the proposed method to analyze data from 

the study described in introduction. Intuitively, the longer mice live, 
the more favorable the treatment combination is. But the mice with 
same survival times may have different tumor volumes. The differences 
in tumor volumes might represent quality of life and reveal potential 
intervention mechanisms of treatments. For instance, scatterplots from 
Treatment F and G look quite similar. As we investigate measurements 
from these two groups, mice with Treatment F tend to die earlier if 
the tumor volumes are not well controlled at early times, while mice 
in Group G are more likely to survive after having high initial tumor 
volumes. 

Detail of the data set is given as follows. W=140 mice were assigned 
to K=14 treatments, and tumor volumes were measured on each mouse 
weekly for maximum of 12 weeks. Time has been normalized to [0,1]. 
There are two categorical covariates group and mouse, and a continuous 
covariate time. We treat group and time as fixed. From the design, the 
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mouse is nested within group and treated as random. 

The SLM model discussed in model and methods enables us to 
(i) estimate the group (treatment) effects; (ii) estimate the population 
mean volume as functions of time; and (iii) predict response over time 
for each mouse. For the purpose of this study we are most interested in 
(i) and (ii). 

Based on the SS ANOVA decomposition in (11) and (12), we may fit 
the following three models. Note that Term 7 in (11), the random effects 
in intercepts, is not included. From the scatterplots in Figure 1, all mice 
start out at about the same level (as designed by the study), indicating 
there is not much of mouse random effects in intercept. Unsurprisingly, 
the random intercept term causes convergence problems as the near-
zero variance is being estimated. Likelihood ratio tests of nested LME 
objects suggest insignificance of the random intercept beyond the 
random slope. Therefore, we carry out the analysis without this term. 

•	 Model 1 includes the first six terms and the eighth term in (11). 
It fits different population mean curves for each group plus a 
random slope for each mouse. We assume that 2

( ) (0, ).iid
w k N γγ σ  

2(0, ),iid
kwj N σ∈  and they are mutually independent. 

•	 Model 2 includes all terms except 7th term in (11). It fits 
different population mean curves for each group plus a random 
slope and a random smooth effect for each mouse. We assume 
that 2

( ) (0, ).iid
w k N γγ σ  ( ) ( )w ks t ’s are stochastic processes 

which are independent between mice with mean zero and 
covariance function 2 ( , ),s penalizedR s tσ  with ( , )penalizedR s t  
being reproducing kernel of the penalized space for cubic 
splines (specific form can be constructed from scaled recursive 
Bernoulli polynomials). We further assume within-group error 

2(0, )iid
kwj N σ∈ 

 and independence between the random effects 
and random errors. These are similar to usual assumptions in 
LME models. 

•	 Model 3 fits first-order autoregressive correlations structure 
AR(1) to Model 2, i.e. kwj∈ ’s are no longer assumed to be 
independent. 

•	 Model 4 uses an extra parameter beyond Model 3 to account 
for unequal variances of within-group error terms kwj∈ ’s by 
modeling variance as an exponential function of time. 

Among all 14 treatments shown in Figure 1, some can be instantly 
eliminated, such as A and K, because of poor survival times. The 
analysis is then narrowed down to the 6 groups N, J, F, L, D, G with 
similar survival times, but may have different tumor volume growth 
profiles (Figure 2). 

Random effects in the smoothing components ( ) ( )w ks t  can 
be fitted manually by constructing a block-diagonal symmetric 
covariance matrix of dimensions n n×  for all observations. 
Each block corresponds to the reproducing kernel ( , )penalizedR s t  
evaluated at observed design points for each subject. Let 1,...,140,w =  

1,...,6,k =  observed time points for   wth mouse tw=(t1,...,tnw)T random 
smoothing vector for wth mouse  ( ) 1 ( )( ( ),...., ( )) ,

w

T
w w k w k nu s t s t=  where  

{ ( , )} , , 1,..., ;
w w ww penalized n n nQ R s t s t t×= =  total random smoothing vector   

1 140( ,..., ) .T T Tu u u= Then random effects in smoothing components can 
be modeled by specifying  2(0, )uu N Qσ , where 1 140diag( ,...., ).Q Q Q=   

Such SLM models are solved by finding solutions of their LME 
counterparts, as shown in (7). This connection can also be utilized to 

calculate AIC, BIC and LRT in the sense of conventional parametric 
models for model selection and comparison, as shown in Table 1. LRTs 
of these four nested models suggest Model 4 to be most favorable. 
Estimated serial correlation coefficient for AR(1) in Model 3 is large 
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Figure 2: Scatterplots of groups of interest.

Model AIC BIC logLik Test L.Ratio p-value  
1 668.0160 754.6460 -314.0080 
2 536.0836 627.0451 -247.0418 1 vs 2 133.9324 <0.0001  
3 430.4238 525.7168 -193.2119 2 vs 3 107.6598 <0.0001  
4 53.2419 152.8665 -3.62095 3 vs 4 379.1819 <0.0001  

Table 1: Model selection criteria for corresponding LME models.
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Figure 3: Predicted group means and 95% Bayesian credible bands.
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(0.72), indicating strong within-subject correlation and supporting 
adequacy of fitting within-subject correlation. Increasing variance over 

time is quite obvious from scatterplots, which also coincides with the 
LRT pick of Model 4.

Figure 3 shows predicted curves along with 95% Bayesian credible 
bands calculated from posterior distributions of fitted values with 
a diffuse prior by letting κ →∞  in (8). Note that these predicted 
curves and credible bands are supposed to represent the mean curves 
for sub-population Bk (Group k), not individuals. This explains why 
some estimated tumor growth patterns actually start to go down at the 
end of the study, such as D and F, reflecting the fact that only mice with 
lower tumor volumes survived among the population of these groups. 
Figure 4 shows pairwise differences with Bayesian credible bands. If the 
credible band runs above or below zero, the two treatments are deemed 
different. Survival times are not under consideration here, so treatment 
with lower tumor volumes is better (given a mouse survives till that 
time). For example, treatments N and J are not different from each 
other since the zero line is fully contained in the credible band. D is 
better than L because the credible band is mostly above zero. The result 
is summarized in Table 2. 

As comparison, result from a simple ANOVA analysis for the log-
transformed data is also listed in Table 2. SLM model is not only able to 
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Figure 4: Pairwise difference estimates with Bayesian credible bands (“-” represents an algebraic minus sign in the top left of each plot).

Pair ANOVA SLM  
N-G no no  
N-J no no  
N-L yes (N) yes (N)  
L-J yes (J) yes (J)  
N-D yes (D) yes (D)  
N-F no yes (F)  
L-D yes (D) yes (D)  
L-F yes (F) yes (F)  
L-G yes (G) yes (G)  
J-D yes (D) yes (D)  
J-F no yes (F)  
J-G no no  
F-D yes (D) yes (D)  
G-D no yes (D)  
G-F yes (G) yes (F)  

Table 2: Comparison of the results based on ANOVA and the proposed method–
whether difference is detected (the one with lower tumor volumes if detected).
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detect more significantly different pairs, but also provides more insight 
into how the pairs are different from each other. It is worth pointing 
out that for Treatment G versus Treatment F, although ANOVA and 
SLM both detect the difference, ANOVA concludes G has lower tumor 
volumes, while SLM picks F. Simply taking averages in ANOVA ignores 
information from time and correlation of measurements within each 
mouse that reveal different behaviors of the two treatment groups 
towards the end. By looking at the SLM predicted population patterns 
in Figure 3, while the two tumor growth profiles look similar during 
early period, tumor volumes in Group F are lower than those in Group 
G for mice that survived to the final period of the study. For example, if 
we only look at tumor volumes past normalized time 0.8, the means for 
Group F and G are 0.4270 and 0.6264 respectively. 

Remark
The dimension of the random spline covariance matrix Q increases 

with the number of observations. As a result, direct computation 
might take a long time. For this specific dataset with all groups, it 
took about one day to compute the model with random smoothing 
effects on a personal computer. To speed up the program, a low-rank 
approximation algorithm was used to reduce the dimension of Q by 
eliminating eigenvectors corresponding to small eigenvalues [31]. In 
our example, with a cutoff value 0.001, the approximation reduced the 
computation time to about an hour and gave almost identical results. 

Conclusion
SLM model only specifies part of the mixed-effects model 

parametrically and leaves the rest to be modeled non-parametrically 
by data itself. It incorporates interpretability and parsimony of a 
parametric model and flexibility of a nonparametric model, and also 
avoids estimating parameters with little biological relevance. The close 
connection with LME models enables us to utilize existing LME fitting 
procedures for computation and model selection. Even when the final 
goal is to build a fully parametric model, SLM model can be useful for 
initial data exploration and shed light on parametric models to follow. 

The cost of SLM model is relatively heavy computation (but 
reasonable with optimization) and difficulty in deriving closed-form 
inferences in the functional space. More research on model selection 
methods is needed as well. 

Further effort can be invested for some special post-hoc methods 
such as multiple comparison correction for the SLM model. The major 
difficulty for such extensions would be establishing an expression of 
the correction, giving a theoretical justification and calculating p-value.
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