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Introduction
Myopia, also known as nearsightedness, is defined as that state 

of ocular refraction in which parallel rays of light entering the eye at 
rest are brought to focus in front of the retina. In this situation, distant 
objects cannot be perceived distinctly. Myopia can occur at any age but 
in most cases it appears at school age and usually progresses several 
years, in few cases progression continues throughout life. In practice 
myopia is treated either by prescribing corrective lenses, such as glasses 
or contact lenses, or by performing refractive surgery. For people 
with myopia and for those who treat myopia and prescribe glasses, 
reliable predictions of myopia progression as early as possible would 
be extremely valuable.

The prevalence of myopia has markedly increased during recent 
decades in many countries. This increase is hard to explain only by 
hereditary factors. Epidemiological studies have confirmed that a longer 
education and higher occupational status, for example, are connected 
with an increased prevalence of myopia [1]. Many studies have shown 
that the younger the age of onset the faster is myopia progression 
[2]. Based on a small sample, Thorn et al. [3] estimated that myopia 
beginning in childhood “stabilizes” in 80% of cases by about 19-years 
of age. There has been an increased interest in long term follow-up 
studies to model the progression of myopia. The estimated models with 
possible covariates then often provide individual prediction curves as 
well. One may also wish to test, for example, whether the progression 
of myopia levels off at a certain age.

The dynamic progression of myopia has not been widely studied 
in the epidemiological or biostatistical literature. The studies mainly 
consider the individual progression curves from retrospective material 
or by means of progression in different materials [4]. Möttönen at al. 
[5] suggested to model myopia using a polynomial (quadratic or cubic) 
random coefficient model. The model is not satisfactory, however,
as even cubic myopia progression curves are not flexible enough to
explain strong changes between 10 and 20 years. In this paper we will
show that mixed-effects regression analysis using quadratic or cubic
splines is a flexible tool to model the progression of myopia that easily
provides individual prediction curves. Furthermore, we show that
different important questions concerning the progression of myopia
may be answered simply by changing the spline basis functions. For a
general theory for mixed-effects regression splines, see e.g. [6,7]. One

of the aims of this paper is to collect and present the theory in an easy 
and coherent way for the users. Mixed-effects regression spline models 
have recently been applied to CD4 counts [8] and to the growth of 
cattle [9]. However, these models have never before been applied to 
myopia progression data.

The paper is structured as follows. In Section 2 we discuss the use of 
the random effect regression model in the case that subject i, i=1, ..., n, 
has pi measurements at time points ti1 , ..., tipi . Note that the number of
measurements as well as the time points vary individually as is always the 
case for myopia follow-up data. Each subject is then supposed to have 
his/her own myopia progression curve as a function of time. This curve 
is observed only through the measurements at the pi time points (with 
measurement errors coming from N (0, τ2)). The individual curves are 
linear combinations of k basis curves, and the k coefficients are assumed 
to come from a k-variate normal distribution with an unknown mean 
vector depending on parameter θ and unknown covariance matrix Σ. 
Parameters θ and Σ (providing the mean curve and variation of the 
curves) are the population quantities we are interested in. We discuss 
the estimation of parameters θ, Σ, and τ2 and show how the estimated 
parameters may be used to find prediction curves with corresponding 
confidence and tolerance intervals. In Section 3 we discuss alternative 
choices of the basis functions; a special interest is in the set of principal 
component functions that can be used for a careful analysis of the 
variation of the curves in the population. In Section 4 we discuss the 
use of spline functions, truncated polynomial spline functions (2 types) 
and B-spline functions, as basis functions. In Section 5 the theory is 
then illustrated with a real data set from a Finnish longitudinal myopia 
study. The paper ends with some final comments in Section 6.
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Abstract
Myopia is a disorder of ocular refraction with varying rates of progression. Although the disorder has a dynamic 

nature, prospective longitudinal studies with long term follow-ups have been remarkably few. In this paper, we show 
how mixed-effects regression splines with different choices of basis functions can be used to model myopia progression 
data in a flexible way. We show how the estimated model may be used to find prediction curves with corresponding 
confidence and tolerance intervals for a new myopic subject. We discuss alternative choices of the basis functions such 
as the truncated polynomial spline functions (2 types) and B-spline functions. Principal component functions may be 
used for an analysis of the variation of the curves in the population. The theory is collected together and presented in 
a coherent way as well as illustrated with a careful analysis of myopia progression data from a Finnish myopia study.
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estimate of θ, namely
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The maximum likelihood (ML) estimates of the parameters θ, Σ, 
and τ2 can be found by minimizing the -2 times the log-likelihood 
function
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The minimization can be done using the expectation maximization 
(EM) algorithm or other optimization routines. For more details about 
basis functions and their use in mixed models [6,7].

Prediction curves based on the model

Throughout this section we assume that we have a model with 
estimated parameters θ , Σ  and 2τ̂  their estimated variances and 
covariances. Consider first the prediction curve for a new individual 
from the same population with a covariate vector x, throughout this 
section we are interested in the curves on some time interval [t0, t1] 
only. The mean progression curve of the new individual is then

( ) ( ) ( ( ))θ′ ′→ Θ = ⊗t x f t x f t .

Consider next the estimate of the mean progression curve with 
its pointwise 100(1-α)% confidence interval as well as its 100(1-α)% 
confidence band. One also often wishes to estimate the 100(1-α)% 
point wise tolerance interval and the 100(1-α)% tolerance band for 
the progression curve. These are found as follows. Notice that the 
confidence intervals and bands in 2 and 3 are based on the joint limiting 
normal distribution of the estimates and therefore only approximate.

The mean progression curve ( ( ))θ′⊗x f t  is estimated by 
( ( ))θ′⊗x f t .

An approximate 100(1-α)% pointwise confidence interval for the 
mean progression curve ( ( ))θ′⊗x f t at time t is given by

 

1( ( )) ( ( )) Cov( )( ( )).αθ θ−′ ′⊗ ± ⊗ ⊗x f t c x f t x f t

1. Notice that pointwise confidence intervals do not give a 
confidence band for the (whole) mean progressive curve over all 
possible values of t. The confidence band is considered next.

An approaximate 100(1-α)% confidence band for the mean 
progression curve ( ( ))x f t θ′⊗ is given by

 

1( ( )) ( ( )) Cov( )( ( )).αθ θ−′ ′⊗ ± ⊗ ⊗x f t c x f t x f t

where c1−α is given by
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where  ~ (0,Cov( ))θ θkrN . Note that c1−α depends on limits t0 and t1 but 

can be easily found by simulation. Note also that 2 2
1 ,1α αχ− −≤ krc .

An estimate for 100(1-α)% pointwise tolerance interval for 

Random Coefficient Regression Model
Random coefficient regression model using k basis functions

Let 1( ),..., ( )kf t f t be the selected k basis functions for myopia 
regression curve. We write

1( ) ( ( ),..., ( ))′= kf t f t f t

for the corresponding vector valued function. We assume that 
individual i has pi observations 

1( ,..., )′=
ii i ipy y y  

at time points ti1 , ..., tipi, i=1, ..., n. We then write
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for the pi × k time design matrix for individual i, i=1, ..., n. The r-variate 
covariate vector xi=(xi1, ..., xir )′ is used to explain the myopia progression 

curve of the ith individual, i=1, ..., n. Finally, write 
1=

= ∑
n

i
i

N p for the 
total number of measurements.

We then make the following model assumption.

Assumption 1:

(I) The myopia progression curve for individual i is

1
' ( ) ( )

=

= ∑
k

i ij j
j

b f t b f t

where

,ξ= Θ +i i ib x

Θ is a k × r-variate matrix of regression coefficients, and ξi∼Nk (0, Σ),

i=1, ..., n.

(II) For individual i, the observed refraction values are

,= +i i i iy Fb 

where 
2~ (0, )

i ii p pN Iτ , i=1, ..., n.

(III) The random variables 1,...,ξ ξn and 1,..., n  are all mutually 
independent.

The parameter Θ stands for the connection between xi and the 
myopia progression curve for the ith individual, Σ shows the variation 
of the curves (in the population of the progression curves), and τ2 
tells about the random variation of the measurements around the 
individuals curves. Note that, if we collect the assumptions together, 
the model can be also written as a mixed model

( ' ) ( ) , 1,..., ,ξ= ⊗ Θ + + =i i i i i iy X F vec F i n

where ⊗ denotes the Kronecker product. Then '⊗i iX F  is the matrix of 
fixed effects and Fi is the matrix of random effects for individual i, i=1, 

..., n. If we further write ' , ( ),θ= ⊗ = Θi i iX X F vec and 2' τ= Σ +
ii i i pV F F I  

then

yi ∼ NPi 
(Xiθ, Vi)

and, if Σ and τ were known, then the maximum likelihood (ML) 
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the individual value of the refraction curve at time t, that is, 
( ) ( ) ( )ξ′ ′= Θ +b f t x f t (in the subpopulation of individuals having the 

same covariate vector value x) is given by

 

1,1( ( )) ( ) ( )x f t f t f tαθ χ ′
−′⊗ ± Σ .

Finally an estimate for 100(1-α)% tolerance band for 
( ) ( ) ( )b f t x f tξ′ ′= Θ +  (in the subpopulation of individuals having 

the same covariate vector value x) is given by

 

1( ( )) ( ) ( )αθ ′
−′⊗ ± Σx f t c f t f t

where c1−α is now determined by
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where ~ (0, )ξ ΣkN . Now 2 2
1 ,1α αχ− −≤ kc .

Assume next that the parameters in the model are known, and 
we predict the mean progression curve of individual i with covariate 
vector xi, that is, the curve

( ) ( ( )) ( )θ ξ′ ′′→ = ⊗ +i i it f t b x f t f t .

The prediction is based on observation vector ( )1  ,  ...,  '=
ii i i py y y . 

Then
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Then we have the following estimates and predictions.

1. The predicted progression curve for ' ( )ib f t  is ˆ ' ( )ib f t where

1( ' ) ' ( )θ θ−= ⊗ +Σ −

i i k i i i ib X I F V y X

2. The pointwise 100 (1-α)% tolerance interval for ' ( )ib f t  is

1,1( ) ( ) Cov( | ) ( )αχ′ ′
−± i i if t b f t b y f t

3. The 100(1-α)% tolerance band for ' ( )ib f t is given by

1( ) ( ) Cov( | ) ( )α
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The Choice of the Basis Curves
Alternative choices of the basis curves

Let us assume that the model fitting is performed using k basis 
functions f1, ..., fk but, for the interpretation purposes, we wish to present 
the results using another set of basis functions 1, , … kg g . Assume also 
that these two sets of basis functions span the same set of progression 
functions, that is,

1 1
1 1

( ) : ,..., ( ) : ,..., .β β β β β β
= =

      ∈ = ∈   
      
∑ ∑ 

k k

j j k j j k
j j

f t g t

Then, if we write

1( ) ( ( ),..., ( ))′= kf t f t f t and 1( ) ( ( ),..., ( )) ,′= kg t g t g t

there exists a full-rank k × k matrix A such that

f (t)=Ag(t), for all t.

Then
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and the model is transformed
*= + → = +i i i i i i i iy Fb y G b 

where
* ~ ( , ).′ ′ ′= Θ Σi i k ib A b N A x A A

The parameters are then transformed in the following way

, ( ) , andθ θ′ ′ ′Θ→ Θ → ⊗ Σ→ ΣrA I A A A

Recall that, in the ML estimation, the parameter estimates are 
transformed in the same way.

Principal component analysis for the variation of the curves

One popular set of basis functions are principal component 
functions which often can be interpreted and are also ordered according 
to the amount of variation they explain.

Consider the random functions

( ) ( )′=h t f t b

where, as before, 1( ) ( ( ),..., ( ))′= kf t f t f t  is a vector valued function 
and ~ ( , )µ Σkb N . Then we define the principal component functions 

1( ),..., ( ) 

kf t f t and corresponding scores z1 , ..., zk as follows.

1. Write Σf for the positive definite k × k matrix with the elements

( ) ( ) ( ) , , 1,..., .Σ = =∫f ij i jf t f t dt i j k

2. Find the eigenvector eigenvalue decomposition 
1/ 2 1/ 2 ,′Σ ΣΣ = Λf f U U  

where Λ is a diagonal matrix containing the eigenvalues of 1/ 2 1/ 2Σ ΣΣf f  in 
decreasing order and U is an orthogonal matrix having has ith column 
the eigenvector corresponding to the ith eigenvalue in Λ.

3. Write
1/ 2 ( ) ~ (0, ).µ′= Σ − Λf kz U b N

4. Write
1/ 2( ) ( ).−′= Σ

ff t U f t

5. Then

1 1( ) ( ( )) ( ) ( ) ... ( )′− = = + +  

k kh t E h t f t z f t z f t z

where
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( ) ( ) , , 1,..., ,δ= =∫  

i j ijf t f t dt i j k

and therefore
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1 1

2 2
1

( ( ) ( ( ))) ( ) ... ( )

... .

− = + +

= + +

∫ ∫ ∫ 

k k

k

h t E h t dt z f t dt z f t dt
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The magnitude of an eigenvalue related to a principal component 
function reflects its relevance and the associated score of it how strong 
expressed the feature represented by this function is, similar as in 
traditional PCA. For further ideas about the decomposition of the 
random effects covariance matrix, see for example [10].

Mixed-effects regression splines 

In this section we consider spline functions which provide a flexible 
basis for smooth myopia progression modeling [6,11,12].

Truncated polynomial spline functions

We first consider the splines based on truncated power functions. 
For the definition, let 0 1 1... +< < < <m mt t t t be the m+2 time points 
(knots) and assume that all the measurements are on the interval [t0, 
tm+1]. Write

( ) max{ ,0} and ( ) min{ ,0}.t t t t+ −= =

The truncated linear spline function is based on m+2 basis functions

f0,1(t) ≡ 1, f1,1(t)=t, f2,1(t)=(t − t1)+ ,... , fm+1,1(t)=(t − tm)+.

The truncated quadratic spline functions has a basis of m+3 
functions

2 2 2
0,2 1,2 2,2, 3,2 1 2,2( ) 1, ( ) , ( ) , ( ) ( ) , ... , ( ) ( ) .+ + +≡ = = = − = −m mf t f t t f t t f t t t f t t t

Finally the splines based on truncated polynomials of degree p are 
given by

, , 0,...,= =k
k pf t k p , and , ( ) ( )+ += − p

p k p kf t t t , k=1, ..., m.

The function space spanned by these functions

, 0
0
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+
=

 
= ∈ 
 
∑ 

m p

p k k p m p
k

f t

is the set of piecewise p-polynomials on the interval [t0, tm+1] with 
continuous p-1 derivatives at the knot points. Note that the same set of 
functions is obtained if one uses the basis functions

, , 0,...,= =k
k pg t k p , and , ( ) ( )+ −= − p

p k p kg t t t , k=1, ..., m. 

If now
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then =p p  , and the sum of the first p+1 terms in ,
0

( )β
+

=
∑
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k k p
k

f t and 

,
0

( )β
+

=
∑
m p

k k p
k

g t give the corresponding p-polynomials on the first and last 

intervals, correspondingly. Then, for example, the null hypothesis

H0: β1=...=βp=0

for the set of functions p  says that the mean curve is constant after the 
last knot point tk, and this hypothesis can be tested using 1̂

ˆ( ,..., )β β p . 
More generally, any linear hypothesis

H0: Aβ=b

for a chosen r × p matrix A having rank(A)=p and for a chosen 
r-vector b can be tested using β̂ −A b that is, under the null hypothesis, 
approximate r-variate normal with zero mean vector and covariance 
matrix

1
1 2

1
' with ' .τ

−
−

=

  ′ = Σ + 
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n

i i i i i i p
i

A X V X A V F F I

Under the null hypothesis, the limiting distribution of the squared 
form test statistic

11
1

1

ˆ ˆˆ( ) ' ( )β β
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i

A b A X V X A A b

is then a chi squared distribution with r degrees of freedom.

B-spline functions

Yet another alternative is to use the basis of B-spline functions 
[13,14]. B-spline functions are constructed recursively using the 
original and additional knot points

1 0 1 2... ... ...− + +< < < < < <m mt t t t

as follows. First, basis functions of degree p=0 are given by piecewise 
constant

,0 1( ) ( ),k k kB t I t t t += ≤ <

k=0, ±1, ±2, ... For p=1, 2, ..., then

1
, , 1 1, 1

1 1

( ) ( ) ( ),+ +
− + −

+ + + +

−−
= +

− −
k pk

k p k p k p
k p k k p k

t tt tB t B t B t
t t t t

k=0, ±1, ±2, ... The choice of the additional knot points outside the 
interval [t0, tm+1] has naturally an effect on some of the functions Bk,p(t) 
on the interval [t0 , tm+1] but the function space

, 1( ) : , ,...,β β β β− − +
=−

  = ∈ 
  
∑ 

m

p k k p p p m
k p

B t

spanned by , ,( ),..., ( )− p p m pB t B t  does not depend on the choice of the 

outside knots. Note also that, at interval [tk,tk+1], , ( )β
=−
∑

m

k k p
k p

B t is a 

linear combination of p +1 functions (polynomials) , ,( ),..., ( )−k p p k pB t B t

only. It is then remarkable that = =p p p   .

Remark 1: Note that, naturally, all three parametric function sets

p , p , and p  provide the same fit (see for example Section 3.7.1 of 
[6]). Estimation of parameters of p has best numerical properties (see 
for example Chapter 5 of [11]) but the interpretation of the regression 
parameters in p , and p is often easier. The first p+1 parameters in p , 
for example, give the p-polynomial on the last time interval [tm, tm+1 

]. The null hypothesis H0: β1=...=βp=0 then says that the mean value is 
constant (does not depend on time) on the last interval.

A Real Data Example  
The data set

We illustrate the theory with a data set from a Finnish longitudinal 
myopia study. 240 children in central Finland were recruited for this 
study in 1983-1984. For details about the design and inclusion criteria, 
see [15]. In this analysis, the measurements are refraction values on 
the right eyes of 118 girls and 118 boys; 4 children were excluded for 
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various reasons. In the beginning of the study the ages of the children 
were between 8.8 and 12.8 years old (mean age 10.9 years). In the first 
three years the children were measured yearly (they actually were 
also randomized into three different treatment arms which is ignored 
here; there were no statistical differences between the arms [16]. As 
a part of the follow-up, the subjects were supposed to see the same 
ophthalmologist for measurements 15 and 25 years after the start of 
the study. Available measurements based on glass prescriptions and 
files from different ophthalmologists and opticians were used to obtain 
additional observations between these time points. During the follow-
up, 2 subjects died and 18 subjects dropped out because of refractive 
surgery. The measurements were not equally spaced and often sparse 
with the mean number of measurements per subject 8.1 (range 2-15). 
The total number of recordings is 1908 with the oldest age 39.0 years. 
Table 1 lists the numbers of measurements for different time intervals.

In the original study, measurements of several covariates were 
collected but, for our demonstration purpose, we consider only sex. 
The observed individual curves are then shown separately for boys and 
girls in Figure 1. These are the raw data for our modeling, and the aim 
is to build prediction curves (with confidence and tolerance bands) for 
a new subject based on these data. A minor question was to consider 
the age when the progression of myopia levels off. The statistical tools 
described in the previous sections are used for the analysis. The analysis 
was done using R 2.15.0 [17], especially the packages splines and lme4 
[18].

Estimates of the parameters for B-spline basis functions

B-spline quadratic basis functions were used for the estimation 
with the knots at the ages 12, 16, 22. These choices were based on the 
consultations with specialists. If no prior knowledge were available, the 
number and locations of the knots could be determined using cross-
validation, model se- lection criteria (AIC or BIC), likelihood ratio tests 
or by using a roughness penalization approach, etc (see for example 
[7]). In our model the number of basis functions is then k=6. With one 
dichotomous explaining variable (sex), we have 12 parameters for θ 
(mean curves) and 21 parameters for Σ, and the residual variance τ2.

Using the R-function lmer [18], we obtain the fixed effects estimates 
of θ that are presented in Table 2. The covariance matrix of the random 
effects, the estimate of Σ, is

0.4058 0.4402 0.3369 0.3760 0.2798 0.1873
0.4402 1.2050 1.0489 0.9415 1.0892 1.0110
0.3369 1.0489 2.2398 2.3378 2.2350 2.5036ˆ
0.3760 0.9415 2.3378 3.2986 2.8482 3.6086
0.2798 1.0892 2.2350 2.8482 3.7131 3.6068
0.1873 1.0110 2.503

Σ =

6 3.6086 3.6068 5.3909

 
 
 
 
 
 
 
  
 

Finally, the error variance estimate is 2ˆ 0.0633τ =

Prediction

The estimated mean curves for boys and girls based on θ̂  are 
shown in Figure 2. The girls seem to have a faster development of 
myopia but the differences between boys and girls seem to vanish with 
the time. After the last knot at age 22, the boys’ mean curve seems still 
to be almost linearly descending while the girls’ curve seems to level off. 

Age Interval (Years)
[8.8, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35, 40)

N 78 890 247 289 122 202 80

Table 1: Number of measurements for different age intervals.
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Figure 1: Observed progression curves for boys and girls.
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Figure 2: Estimated mean curves for boys and girls.

Function Estimate Std-Error Function Estimate Std-Error
f1 (age) -0.7643 0.1275 f1 (age)*girl 0.5111 0.1756
f2 (age) -1.2067 0.1093 f2 (age)*girl girl -0.1676 0.1544
f3 (age) -3.1533 0.1417 f3 (age)*girl -0.4388 0.2000
f4 (age) -4.1287 0.1796 f4 (age)*girl -0.3573 0.2503
f5 (age) -4.9552 0.2077 f5 (age)*girl -0.6107 0.2878
f6 (age) -4.8680 0.2558 f6 (age)*girl -0.1322 0.3534

Table 2: Estimates of fixed effects and their standard errors.
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Figure 3: Charts of predicted progression of myopia at age 9. The left panel 
shows the charts for boys and the right for girls. Each curve describes then 
the predicted progression curve of myopia based on a single measurement at 
age 9.
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Figure 4: Prediction curves with point wise tolerance intervals and tolerance bands for a randomly selected girl (right column) and boy (left 
column). In each case, the full points are used for prediction.  Intervals and bands are at the 95% level.
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Figure 5: Spline basis functions used in this analysis.  The left column gives B-spline basis functions, the middle column principal basis 
functions, and the right column truncated power spline functions. Vertical lines indicate the knot locations at the different time points.
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From a medical point of view, it is interesting to predict the progression 
of myopia just using the measurement at the first visit. As an example, 
we provide in Figure 3 the progression chart for the first visit at the age 
of 9 years.

As explained before, the prediction curves may be based on several 
observations as well. To illustrate this, we randomly selected one boy 
and one girl with at least eight measurements. For both subjects, we 
found the prediction curves with pointwise 95% tolerance intervals 
and 95% tolerance bands based on the first three, first five, and first 
seven observations. As explained in Section 2.2, tolerance bands may 
be here based on 2

6,0.95 12.5916χ =  (“conservative”) or on the constants 
2
0.95c  (“simulated”) that can be estimated through simulations. Our 

simulated values are based upon 2000 replications. The predictions, 
tolerance intervals, and tolerance bands are given in Figure 4.

For the girl, the prediction curves based on three or seven 
observations seem to work well. If five points were used, the (strange) 
later upward trend at later age is missed. The results for the boy look 
similar. The conservative tolerance band that is easy to compute is too 
conservative to be helpful here.

Alternative sets of basis functions

B-spline basis functions are mathematically and numerically 
attractive but the interpretation of the parameters in Table 2 is difficult. 
Consider first the presentation of the model using the principal 
component functions as presented in Section 3.2. First, the matrix Σf 
can be computed using numerical integration, for example. The six 
eigenvalues of 1/ 2 1/ 2Σ ΣΣf f then are 2.8463, 0.1375, 0.0477, 0.0315, 0.0120, 
0.0017, and the cumulative proportions of the variation explained by 
the eigenvectors are 0.9251, 0.9698, 0.9853, 0.9955, 0.9994, 1.0000, 
respectively. The B-spline basis functions and the principal component 
functions are shown in Figure 5 (two first columns). It is remarkable 
that the first three PCA basis functions explain together over 98% of 
the variation. The first principal function is simply for the general 
progression level (with a typical progression). The second component 
seems to be an indicator for strong early progression as a subject with 
a large score will exhibit much faster progression than one with a small 
score. The third function roughly describes the contrast between the 
first and third interval reflected by the two opposing peaks of the curve.

Although the principal component functions may be used to find 
the main type of variations between the individual curves, they are not 
practical if one wishes to have parameters to tell what is happening in 
the beginning or in the end of the follow-up period. These studies can 
be performed with the truncated power splines. One may be interested, 
for example, whether the progression of myopia levels off after the last 
knot value. Figure 2 shows that on the average the stabilization does 
happen neither for boys nor for girls. Separate analyses were made for 
boys and girls, however, to confirm that. For both cases, we fitted the 
model using B-splines and then changed to the truncated power spline 
functions shown in Figure 5 (the rightmost column) as explained in 
Section 3.1. (The matrix A may be simply found by calculating the 
values of all 12 functions at six suitable time points).

To demonstrate the conversion Tables 3 and 4 gives the estimates 
for the fixed effects using B-spline functions and truncated power 
spline functions for boys and girls, respectively. The null hypothesis 
that the myopia progression levels off at 22, then says that the second 
and third coefficients for truncated power spline functions are zero. 
Both p-values are less than 0.0001 and the null hypotheses should 
therefore be rejected, see Section 4.1.

Discussion
In this paper we showed that the random regression analysis 

using polynomial spline functions is a flexible way to model myopia 
progression. The estimated model then also provides easy prediction 
charts for myopia progression depending on previous measurements. 
In the estimation of the parameters in the model, the B-spline functions 
are preferable but the results can be easily transformed to any set of 
basis functions spanning the same function space. The model also 
easily allows the use of covariates.

In our example, the theory was illustrated by testing the hypothesis 
that on the average the myopia progression levels off at the age of 22. 
The hypothesis was rejected but we believe that this may have happened 
partly due to the bias coming from the data collection procedure. The 
numbers of measurements pi and data points 1,  ...,  ii i pt t  are informative 
in the sense that fast myopia progression is naturally connected to a 
high number of measurements. The subjects with early stabilized level 
have sparse late measurements, and the estimates of the parameters 
describing the progression in the end of the follow-up are then mainly 
based on the measurements from subjects with late progression. This 
causes bias in the estimation of the model. This is similar to the analysis 
of missing data problems (with informative missingness) or to the 
analysis of clustered data with informative cluster size [19]. To correct 
the bias is an interesting topic for a future work. Furthermore, robust 
estimation procedures should be developed here as the data contain 
clear outliers, that is, the individual curves with atypical or even 
impossible behaviour. The outliers naturally have a strong effect on the 
fit of the data.
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