

Mixed Reality and Neuroholography in Preoperative Brain Mapping

Anobile Zimmer*

Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50121 Florence, Italy

Introduction

The rapid evolution of medical imaging and computational visualization technologies has revolutionized the way neurosurgeons plan and perform intricate brain surgeries. Among the most transformative developments is the convergence of Mixed Reality (MR) and neuroholography-technologies that allow for the immersive, interactive visualization of complex neuroanatomical structures. Mixed reality combines the best of Virtual Reality (VR) and Augmented Reality (AR), blending digital content with the real world, while neuroholography involves the generation of three-dimensional holographic representations of the brain based on high-resolution imaging data. Together, these tools are poised to redefine preoperative brain mapping, a critical phase in neurosurgical planning that determines the trajectory, precision and safety of operations involving vital neural tissues. Traditional methods of preoperative planning rely heavily on two-dimensional (2D) MRI and CT scans, which require clinicians to mentally reconstruct three-dimensional (3D) anatomical relationships. This cognitive leap can be challenging and may result in suboptimal understanding of spatial dynamics. Mixed reality and neuroholography, however, offer a paradigm shift by enabling neurosurgeons to visualize and manipulate 3D models of a patient's brain in real-time, allowing for unparalleled spatial awareness and personalized surgical strategies [1].

Description

Mixed reality is a spectrum of immersive technologies that includes augmented reality (AR), where digital images overlay the real world and Virtual Reality (VR), which immerses users in a fully digital environment. MR devices such as Microsoft HoloLens, Magic Leap and custom-built surgical headsets allow for real-time interaction with holographic images within the context of the physical operating room. Neuroholography refers specifically to the generation of holographic representations of the brain using imaging modalities like MRI, DTI (diffusion tensor imaging), fMRI and CT scans. Advanced rendering algorithms and Graphics Processing Units (GPUs) convert this data into manipulatable 3D models that accurately reflect individual patient anatomy. These holograms can be rotated, dissected, layered and annotated, offering a depth of interactivity not possible with static images. Together, MR and neuroholography create an immersive planning environment in which surgeons can explore the patient's brain as if it were suspended in midair, identifying critical areas such as tumors, blood vessels and eloquent cortex with precision. Integration with neuronavigation systems further enhances surgical accuracy and real-time intraoperative guidance [2].

MR-based neuroholography allows surgeons to visualize the spatial relationship between brain tumors and surrounding functional areas, such as the motor cortex or speech centers. This helps define safe resection boundaries and choose optimal surgical trajectories. In patients with intractable epilepsy,

***Address for Correspondence:** Anobile Zimmer, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50121 Florence, Italy; E-mail: zimmeranobile@ier.it

Copyright: © 2025 Zimmer A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: 02 April, 2025, Manuscript No. jcnn-25-167733; **Editor Assigned:** 04 April, 2025, Pre QC No. P-167733; **Reviewed:** 15 April, 2025, QC No. Q-167733; **Revised:** 21 April, 2025, Manuscript No. R-167733; **Published:** 28 April, 2025, DOI: 10.37421/2684-6012.2025.8.286

preoperative mapping is crucial for identifying seizure foci and preserving eloquent cortex. Neuroholography combined with functional imaging (e.g., fMRI, PET) helps localize the epileptogenic zone and predict outcomes. Vascular neurosurgery demands precise understanding of vessel anatomy and flow dynamics. Mixed reality allows real-time visualization of aneurysms, Arteriovenous Malformations (AVMs) and feeding/draining vessels, reducing intraoperative surprises. For patients undergoing DBS for Parkinson's disease or dystonia, MR-guided neuroholography helps accurately target deep brain structures like the subthalamic nucleus and globus pallidus internus. [3].

High-resolution, multimodal imaging is the first step. MRI provides anatomical detail, fMRI offers functional data and DTI traces white matter tracts. These datasets are co-registered and fused using software such as Brainlab, 3D Slicer, or proprietary platforms. Specialized algorithms convert imaging data into 3D meshes and volumetric renderings. Software platforms apply filters, segmentation and surface reconstruction to create detailed neuroholograms. These holographic models are uploaded to MR headsets or projection systems. Users can manipulate, annotate and navigate the models using gestures, voice commands, or hand-held controllers. Surgeons rehearse the procedure in a simulated environment, identifying optimal entry points, avoiding critical structures and minimizing risks. The rehearsal can be shared with a surgical team for collaborative planning [4].

Surgeons gain an intuitive grasp of complex anatomy, improving decision-making and confidence. The ability to visualize depth, angles and relationships helps avoid critical structures. Patient-specific holograms tailor surgical strategies to individual anatomy and pathology, potentially improving outcomes and reducing complications. Better planning and rehearsal lead to faster, more efficient procedures. Fewer intraoperative surprises mean lower risk and shorter anesthesia duration. Medical students and residents benefit from immersive, hands-on learning. Neuroholography enhances comprehension and retention compared to 2D learning materials. Surgeons can use MR to explain procedures to patients and families, increasing understanding and informed consent. High-end MR hardware and software can be prohibitively expensive, limiting availability to well-funded centers. Democratizing access remains a challenge. Rendering delays, resolution constraints and hardware limitations can affect performance. Integration with existing hospital infrastructure can be complex [5].

Conclusion

Mixed reality and neuroholography represent a groundbreaking advancement in the field of neurosurgery, particularly in the realm of preoperative brain mapping. These technologies empower clinicians with deeper insight into patient-specific anatomy and pathology, fostering precision, safety and personalization in surgical planning. By transitioning from abstract 2D representations to immersive 3D visualizations, MR and neuroholography not only improve clinical outcomes but also enhance education, patient engagement and interdisciplinary collaboration. However, as with any innovation, thoughtful integration is necessary. Challenges related to cost, accessibility, accuracy and ethics must be addressed to ensure equitable and responsible use. With continued refinement and cross-disciplinary partnerships, mixed reality and neuroholography will likely become standard components of neurosurgical practice, ushering in an era where surgery is not only guided by hands and tools but by immersive intelligence that bridges biology and technology.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Vallar, Giuseppe, Lorenzo Bello, Emanuela Bricolo and Antonella Castellano, et al. "Cerebral correlates of visuospatial neglect: A direct cerebral stimulation study." *Hum Brain Mapp* 35 (2014): 1334-1350.
2. de Zwart, Beleke and Carla Ruis. "An update on tests used for intraoperative monitoring of cognition during awake craniotomy." *Acta Neurochir* 166 (2024): 204.
3. Ruis, Carla. "Monitoring cognition during awake brain surgery in adults: A systematic review." *J Clin Exp Neuropsychol* 40 (2018): 1081-1104.
4. Lee, Eudocia Q., Ugonma N. Chukwueke, Shawn L. Hervey-Jumper and John F. De Groot, et al. "Barriers to accrual and enrollment in brain tumor trials." *Neuro-Oncol* 21 (2019): 1100-1117.
5. Ille, Sebastian, Haosu Zhang, Lisa Sogerer and Maximilian Schwendner, et al. "Preoperative function-specific connectome analysis predicts surgery-related aphasia after glioma resection." *Hum Brain Mapp* 43 (2022): 5408-5420.

How to cite this article: Zimmer, Anobile. "Mixed Reality and Neuroholography in Preoperative Brain Mapping." *J Clin Neurol Neurosurg* 8 (2025): 286.