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Abstract
The self-destruction of cells infected with viruses undergoes the process of apoptosis generally to restrict infection 

and the spread of viral progeny. To avoid infection host has evolved interconnected complex defence network that 
comprises innate and acquired immune response. Mitochondria being considered as powerhouse of a cell is not 
limited to only energy production, but mitochondria perform various other functions in (disease, apoptosis and host 
innate immune system) which make them absolutely indispensable to the cell. This makes them a target of almost all 
the invading pathogens including viruses. Therefore being a multifunctional organelle, the viruses choose mitochondria 
as a favourite organelle as they can easily take control of the whole cell and make it to promote or block apoptosis as 
per their need.
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Introduction
Mitochondria besides acting as a power house of a cell are 

multifunctional organelles but it is also true that mitochondria are 
the most suitable target of cells under attack from microorganisms 
like viruses or ROS produced upon different viral infections although 
there are also various other targets. Mitochondria perform various 
other functions which make them absolutely indispensable to the cell, 
therefore by hijacking the mitochondrial functions upon different viral 
infection make them easy to take control of the whole cell. Mitochondria 
has been found to be involved in different signal transduction pathways, 
play role in process of aging, regulation of different biochemical 
pathways involved in cellular metabolism programmed cell death, in 
development, diseases immune response and cell cycle control [1-15]. 
The mitochondrion contains a single 16 kb circular DNA genome which 
encodes 13 polypeptides, 2 ribosomal 12 RNA, 22 tRNA. All of these 
by-products of mtDNA are essential in electron transport chain for 
the generation of ATP by the process called oxidative phosphorylation 
[16]. The ATP generation requires some proteins from both the nuclear 
genome as well as from mitochondrial Genome. Thus any injury to 
mitochondria DNA results in serious cell damage. The mtDNA being 
more suitable to damage is due to lack of protective histones and also it 
lies in close to electron transport chain which is the main centre of ATP 
production in mitochondria. Mitochondria possess two well defined 
compartments: the matrix, surrounded by the inner membrane (IM), 
and the inter-membrane space, surrounded by the outer membrane 
(OM). The inner membrane is folded into special structures called 
as cristae carrying special protein complexes required for electron 
transport chain and allows free transport of CO2, O2 and water only. 
The outer membrane and inner membrane encloses a space called 
as inter membrane space (IMS) which is fully loaded with apoptotic 
factors like cyt-c, SMAC/Diablo, endonuclease G which are released 
when an apoptotic signal is received by mitochondria (Δψm). The 
matrix contains different proteins and recyclable molecules required for 
energy production to be used to perform different functions.

Higher vertebrates have evolved two major mechanisms to control 
virus infection. One is based on the host’s immune response against the 
virus infection, and the other is biased on cell autonomy, in which cells 
undergo certain physiological changes upon the onset of infection such 
as unscheduled activation of the cell cycle by viral proteins. The self-
destruction of virally infected cells through the process of apoptosis 
generally serves to limit infection and the spread of viral progeny, and 

therefore accords some degree of protection against infection. Many 
virus-encoded gene products (proteins) interfere with both the intrinsic 
and extrinsic apoptotic pathways by interacting directly or indirectly 
with components of the highly conserved biochemical pathways that 
regulate PCD or even necrosis (Figure 1). Viruses present a biological 
puzzle. On the one hand, they block apoptosis by interacting with Bcl-2 
anti-apoptotic sensor proteins to prevent premature death of the host 
cell and so maximize virus progeny from a lytic infection or facilitate 
a persistent infection. On the other hand, a growing number of viruses 
appear to actively promote apoptosis by interacting closely with the 
pro-apoptotic Bcl-2 family sensor proteins upon the completion of a 
lytic infection and by serving to spread virus progeny to neighbouring 
cells while evading the host’s inflammatory responses. Viruses may 
perform both functions depending on their need. Recent studies have 
shown that it is not just the majority of viruses, but also most other 
plant viruses, that force the cell to undergo the process of apoptosis. 
However, why the virus forces the host cells to undergo apoptosis is 
not fully understood and is presently being characterized. Therefore, 
additional intensive, detailed studies will serve to further elucidate the 
mechanisms of lytic infection and may provide new drug targets for the 
treatment of important virus infections.

Apoptosis major form of controlled cell death has a key role in the 
pathogenesis of many diseases including viral, cancer, inflammation, 
and neurodegenerative diseases. The process of programmed cell death 
(PCD) is controlled by a different range of cell signalling pathways 
originating either from the external environment of a cell (extrinsic) 
or from within the cell itself (intrinsic) [17]. The common event at the 
end-point of both the intrinsic and extrinsic pathways is the activation 
of a set of cysteine proteases (caspase). The extrinsic pathway originates 
at the plasma membrane following the engagement of a family of 
cytokine receptors, such as tumour necrosis factor receptor-1 (TNF-R1) 
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by their cognate ligands (TNF-α). Ligand/receptor binding induces the 
recruitment of several adapter proteins and proenzymes, which in turn 
activate caspase (caspase-8 and -10), and finally results in apoptosis 
and cell death [18]. The intrinsic pathway is triggered by different 
extracellular or intracellular signals, such as oxidative stress, that results 
in activation of the initiator caspase-9. Caspase-9, in turn, activates 
caspase-3, a major effector caspase responsible for the degradation of 
cellular substrates [19]. Apoptosis may be used by the host both to limit 
the production of viruses and to disseminate them [20-23]. However, 
viruses use the apoptosis process to produce sufficient virus progeny or 
facilitate virus release [24,25]. The PCD induced by virus infection has 
often been defined as typical apoptosis [26-28]. However, recent studies 
disclosed that non-apoptotic forms of PCD are important for the 
pathogenesis of certain RNA viruses, including the JC virus, hepatitis 
C virus, coxsackievirus B3, Enterovirus and dengue virus [21,29]. The 
mechanism of DNA virus-induced non-apoptotic cell death is not well 
known. Although not all signals initiating the apoptosis pathway are 
understood, in many but not all, cases, the tumor suppressor protein 
p53 is required to propagate the signal to commit suicide [30,31]. The 
fate of the cell to undergo apoptosis mainly depends on the dynamic 
balance between the Bcl-2 family sensor proteins, which both promote 
and inhibit apoptosis (Figure 1) [32]. Members of the Bcl-2 family 
sensor proteins represent a major key point in the apoptotic pathways. 
They appear to sit at a node in the apoptotic pathway at a point of 
integration for stimuli that provoke apoptosis and, in many but not all 
cases, they appear to influence the activation of caspase family members 
(proteases), which perform the “execution” phase of apoptosis, by 

cleaving a number of cellular proteins to bring about the destruction of 
cellular structures [33]. 

Mitochondria in normal and apoptotic cells

Mitochondria are multifunctional organelles covered by outer 
membrane (OM), and inner membrane and in between lies the inter 
membrane space. The IM is folded into special structures called as 
Christie with increases the surface area of inner membrane. The 
Christie is in turn equipped with protein complexes required for 
electron transport chain (ETC), ANT and ATP synthase. To function 
properly, the IM is almost impermeable in physiological conditions 
there by allowing the respiratory chain to create an electrochemical 
gradient. The electric potential created is important for maintaining 
MMP (Δψm) of IM. The pumping of proton by electron transport 
chain out of the inner membrane in necessary for activation of ATP 
synthase which phosphorylates ADP to ATP. The ATP generated on the 
matrix side of IM is in turn exported by ANT in exchange of ADP. The 
outer membrane is highly rich in voltage dependent channels (VDAC), 
which in normal physiological conditions is permeable to solutes of size 
up to 5000 Da. The IMS is chemically equivalent to cytosol in terms 
of low molecular weight solutes and is rich in special set of proteins. 
Only 13 subunits of the respiratory chain in the IM are encoded by 
the small (about 16,500 bp) mitochondrial genome, which resides 
in the matrix. However rest of almost more than 99% proteins are 
encoded by nuclear genome and selectively imported into either of the 
mitochondrial compartments. The protein composition of the OM, IM, 
inter membrane space and matrix thus is very unique.

Figure 1: Represents the schematic diagram of extrinsic and intrinsic apoptotic pathways induced by different viruses. The extrinsic pathway originates at the plasma 
membrane by ligand/receptor binding results in the recruitment of several adapter proteins and proenzymes, which in turn activate caspases (caspase-8 and -10), and 
finally results in apoptosis and cell death. The intrinsic pathway is triggered by different extracellular or intracellular signals, such as viral proteins oxidative stress, that 
results in MMP (Δψm) loss and activation of the initiator caspase-9. Caspase-9, in turn, activates caspase-3, a major effector caspase responsible for the degradation 
of cellular substrates. The common event at the end-point of both the intrinsic and extrinsic pathways is the activation of a set of cysteine proteases (caspases). ROS- 
reactive oxygen species, ER-endoplasmic reticulum, DISC- death inducing silencing complex.
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The MMP (Δψm) loss results by the imbalance in the membrane 
potential of both inner as well as outer membranes, which results in 
arrest of biosynthetic functions as well as bioenergetics crises in a cell. 
The MMP (Δψm) loss results in the release of different proapoptotic 
proteins from IMS like cytochrome c (Cyt c) and Smac/DIABLO, as 
well as caspase independent death effectors such as apoptosis-inducing 
factor (AIF) and endonuclease G (EndoG) [34-36].This results in the 
induction of both caspase independent and caspase dependent cell 
death [37]. Accidentally induced MMP (Δψm) contributes to the 
development of diseases characterized by an excess of cell death, such 
as ischemia/reperfusion injuries, trauma, toxic/metabolic syndromes as 
well as chronic neurodegenerative conditions like amyotrophic lateral 
sclerosis or Alzheimer, Parkinson, and Huntington diseases [38,39]. 
MMP (Δψm) is highly regulated process controlled by a different 
complex network of signaling pathways that involves both endogenous 
(e.g. pro- and anti-apoptotic Bcl-2 family proteins, p53, kinases, 
phosphatases, lipid second messengers [40-46], ROS, Ca2+ overload 
as well as exogenous factors (e.g. viral proteins, toxins, pro-oxidants 
[29,47-50]. As MMP (Δψm) loss results serious damage to cell and were 
from the cell has no chances to heal. Therefore in the intrinsic apoptotic 
cascade, any viral factor that influences MMP (Δψm) must have a major 
impact on cell fate, either by inducing or blocking cell death [29]. 

From the last few years, major efforts and also success have been 
made to understand of the mechanisms underlying MMP (Δψm) in 
disease and health. Recently different models have been proposed and 
worked in both in vivo and in vitro studies explaining the possible 

mechanisms underlying the MMP. MMP loss in whatever way results 
lead to both functional as well as structural collapse of mitochondria 
that commits the cell to death [51,52]. The question still remains 
unanswered how these structural modifications of mitochondria might 
impact on viral infection.

Different models explaining MMP (Δψm) loss

The loss of MMP (Δψm) associated with apoptosis have different 
effects on both the outer as well as inner membrane which further may 
or may not result in matrix swelling. The presence of large number of 
VDAC on OM makes it highly selective and freely preamble to solutes 
and small metabolites (5 kDa). This cut-off maintains not to lose the 
matrix from the IMS. The apoptosis associated loss of MMP (Δψm) 
has been explained by presenting different models. Usually 4 models 
have been put forward while carrying the in vitro studies on purified 
mitochondria.

1st model: The first model explains the permeabilization of IM, 
when some viral proteins or chemical substances interact with the 
ANT located on IM which results in osmatic matrix swelling and OM 
rupture (Figure 3). The OM rapture because the surface area of the 
IM with its folded cristae exceeds that of the OM (Figure 3). Many 
well-known MMP (Δψm) regulators, like Bak, Bax, Bcl-xl, Bcl-2 and 
cyclophilin D (mitochondrial target of cyclosporine A,), interact with 
the ANT located on mitochondrial inner membrane [53-55]. Recent 
studies has discovered various viral proteins with apoptosis inducing 
and apoptosis-inhibitory (pUL37x from cytomegalovirus) (Vpr from 

Figure 2: Showing the functional domains identifies in different viral proteins acting through mechanisms different from that of vBcl-2. TM, transmembrane domain; 
MTS, mitochondrial targeting signal; LLKLL, cut leucine-rich region; TA, transactivation domain; BH2, BCL-2 homology region; N-BIR, baculovirus internal repeat-like 
domain; CKC, domain required to collapse the keratin network, which also contains sequences directing multimerization. +++, positively charged amphipathic -helix; 
H1, H2, -helical regions; The MTS/LLKLL sequence of HPV E1∧E4 protein serves both for keratin binding and mitochondrial targeting .



Volume 6 • Issue 1 • 1000181Mol Biol, an open access journal
ISSN: 2168-9547

Citation: Reshi L, Hong JR (2017) Mitochondria as a Favourite Organelle for Invading Viruses. Mol Biol 6: 181. doi: 10.4172/2168-9547.1000181

Page 4 of 12

Molecules involved in cell signaling pathways

HIV-1) activity that also interact particularly with VDAC and ANT 
[56,57].

2nd model: The second model explains the pore formation by VDAC 
on OM without affecting the inner membrane (Table 1,2). This MMP 
(Δψm) loss has further been found to be enhanced by Bax and inhibited 
by Bcl-2 in vitro. The formation of pore on the outer membrane by the 
interaction of Bax with VDAC when inhibited by Koenig’s polyanion, 
(VDAC inhibitor), results that it is VDAC, not Bax, which plays the 
actual role of MMP (Δψm) loss on the outer mitochondrial membrane. 

3rd model: The third model explains that the oligomerization 
of Bax on mitochondrial membrane when Bax is translocating from 
cytosol to mitochondrial membrane results in the formation protein 
translocation channel which is independent of VDAC. Thus the Bax 
and VDAC act independently depends upon the apoptotic inducing 
signal (Figure 3,4) [58,59].

4th model: In the fourth model, the VDAC regulates MMP (Δψm) 
through yet another mechanism related to its functional and physical 
contact with the ANT (Figures 3 and 4). An apoptosis-related increase 
in DYm (IM) would transfer charges to the OM, thereby resulting 
in closure of the VDAC (which closes when voltage increases) [60]. 
The Bcl-2 may play its role by acting as an ionophore (Ion permeable 
and protein impermeable) to maintain the electrical mitochondrial 
membrane potential across the outer membrane. Therefore Bcl-2 
indirectly plays its role by exchange of ATP/ADP (VDAC- and ANT-
dependent continuous exchange of ATP/ADP )across mitochondrial 

membrane which results in avoiding the interspace matrix swelling 
which results as a consequence of instability in VDAC/ANT [60,61].

Role of mitochondria in host immune response

The viral entry into the host cell activates signaling pathways, 
leading to the production of IFN’s, inflammatory cytokines and 
chemokine’s which limit or eliminate the invading virus. The host cell 
uses pattern recognition receptors (PRR’s) to detect viral foreign nucleic 
acids. There are three types of PPR’s-TLR’s, RIG 1 and nucleotide 
oligomerization like receptor(NOD) TLR-3 are present in all immune 
cells and recognize dsRNA. The RIG-1 is special receptors with c 
terminal domain having helicase activity which is ATP dependent, 
whereas the N terminal domain of RIG-1 has two caspase activation 
and recruitment domains (CARDs). The conformational changes of 
RIG 1 expose its CARD domains to bind and activate downstream 
effectors leading to the formation of enhance some triggering NF-κB 
production [62]. 

Recently another protein which functions downstream of RIG-
1 with CARD domain have been identified. This proteins are known 
by different names like mitochondrial anti-viral signaling protein 
(MAVS), virus-induced signaling adaptor (VISA), IFN- promoter 
stimulator 1 (IPS-1) and CARD adaptor inducing IFN- (CARDIF) [63-
66]. Research indicates that the MAVS has an important role in raising 
the antiviral defences in the cell. The in vivo knockout studies with 
MAVS -/- deficient mice has shown compromised immune response 
against viruses, though they don’t show any developmental abnormality 

Figure 3: Schatemic diagram explaining the different possible mechanisms of MMP (Δψm) loss due to permebilization of both outer as well as inner membrane. 1, 
Normal adenine nucleotide translocator (ANT) functions as a vital ATP/ADP-specific antiporter or in case of MMP (Δψm) loss can act as a lethal nonspecific pore. 
Pore formation is aided by interaction with cyclophilin D (CypD). 2, The inhibition of voltage dependent closure of VDAC is carried by anti-apoptotic protein Bcl-2 which 
otherwise will be destructive. 3, The voltage-dependent anion channel (VDAC) may be converted into a cytochrome-c-release permanent pore. 4, Oligemerization of 
Bax can form a nonspecific pore without requiring interactions with different mitochondrial membrane proteins. 
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Apoptosis EBV BHRF1, 
KHSV KSBCL-
2, HCMV, SARS 

Figure 4: Showing interaction of different viral proteins with mitochondria. The apoptotic signal received by mitochondria results in MMP (Δψm) loss by imbalance in 
BCL-2 family protein which ultimately activates downstream apoptotic signals.

Figure 5: Inactivation of Bax can be directly converted into active form by interacting with proteins with BH3 domains. The activated Bax undergoes oligomerization on 
mitochondrial membrane and results in pore formation that ultimately leads to MMP (Δψm) loss. However the interaction of Bax with anti-apoptotic proteins Bcl-2 and Bcl-xl 
drives the relocalization of Bax exposing the N terminal domain that unable its insertion into mitochondrial outer membrane. Recent studies have shown that Bax can be 
activated by different viral proteins other than containing BH3 domains. However the complete mechanisms are not well understood. Example like (GSIV -ST-kinase)
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[67]. Overexpression of MAVS leads to activation of NF-κB and IRF-3, 
leading to the induction of type I interferon response. In the absence of 
MAVS, this effect is abrogated [68] indicating the specific role of MAVS 
in inducing antiviral response. Although the present studies about the 
proteins acting downstream of MAVS to induce interferon production 
has not yet given any solid clue. The C-terminal Trans membrane 
domain of MAVS has been found vital in targeting the proteins to 
the mitochondrial outer membrane instead of protein rich region 
[68]. Further domain studies have revealed that the C terminal Trans 
membrane domain of MAVS share similarity with the c terminal tails of 
various proteins located on the mitochondrial outer membrane like Bcl-
xl and Bcl-2. Therefore the ability of viruses to hijack the localization of 
MAVS to different cellular organelles instead of their target organelles 
or affecting their cleavage from mitochondria ultimately effects the 
interferon production which viruses use to protect from host immune 
response.

Viral proteins targeting mitochondria

Many virus-encoded gene products (proteins) interfere with both 
the intrinsic and extrinsic apoptotic pathways by interacting directly 
or indirectly with components of the highly conserved biochemical 
pathways that regulate apoptosis or even necrosis [32]. Viruses present a 
biological puzzle. On the one hand, they block apoptosis by interacting 
with Bcl-2 anti-apoptotic sensor proteins to prevent premature death 
of the host cell and so maximize virus progeny from a lytic infection or 

facilitate a persistent infection. On the other hand, a growing number of 
viruses appear to actively promote apoptosis by interacting closely with 
the pro-apoptotic Bcl-2 family sensor proteins upon the completion of 
a lytic infection and by serving to spread virus progeny to neighbouring 
cells while evading the host’s inflammatory responses. Viruses may 
perform both functions depending on their need. Recent studies have 
shown that it is not just the majority of aquatic viruses, but also most 
other viruses, that force the cell to undergo the process of apoptosis. 
Obviously, viruses target the central parts of the proapoptotic signal 
transduction and execution machineries. Examples of proteins that 
subvert pro-apoptotic signals include viral proteins that block tumour 
necrosis factor (TNF) and its signals [69] viral proteins that inhibit 
ds-PKR, a protein kinase that is activated by ds-RNA (and which can 
initiate apoptosis in virus-infected cells) [70] viral proteins that inhibit 
p53 (a transcription factor that is often rate-limiting for DNA damage-
induced apoptosis) [71,72] and viral proteins that inhibit caspase 
[73,74]. In addition, viral proteins are often acting on mitochondrial 
receptors and membranes to inhibit or induce MMP (Δψm) and this is 
the focus of the present paper (Tables 1 and 2).

Many viral proteins that alter mitochondrial ion permeability and/
or membrane potential have been identified. Most prominent of these 
are discussed below:

1. Poliovirus (PLV) infection causes acute disease called as 
paralytic poliomyelitis which results in flaccid paralysis due 
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Figure 6: GSIV ST-kinase induced MMP loss by JC1 lyophilic dye in grouper fish GF-1 cells at 24 hpt, upon transfection by ST kinase (g-i) and control vectors (d-f). Hydrogen 
peroxide treatment (a-c) is as a positive control. The red color indicates the healthy mitochondria whereas the increase in green fluorescence indicates the MMP loss.
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to caspase dependent apoptosis of motor neurons [75]. The 
polio virus encoded viroprotein 2B induces a perinuclear 
redistribution of mitochondria and ultimately alters their 
morphology resulting in MMP (Δψm) loss [76] in a similar 
fashion as by HBx protein of hepatitis B virus. 

2. The overexpression of Orf C of WDSV, a retrovirus causing 
benign tumors in fish characterized by seasonal regression 
[77,78]. Cause similar perinuclear clustering of mitochondria 
and MMP (Δψm) loss followed by cytochrome c release and 
other apoptosis inducing factors.

3. The E1 and E4 are two early genes encoded by spliced mRNAs 
of HPV virus genome. The in vitro studies carried on mature 
human keratinocytes have shown that E1 E4 binds and collapses 
cytokeratin network of cells [79]. Then makes a way towards 
mitochondria by special N terminal Lucien rich mitochondrial 
localization signal were it detaches mitochondria and get them 
aggregated around the nucleus. The detached mitochondria 
undergo morphological change and results in MMP (Δψm) loss 
and apoptosis. Several other proteins like E6 and E7 play a role 
in prevention of p53 induced apoptosis [80-83].

4. The anti-apoptotic core protein of HCV inhibits the DCA 
induced mitochondrial apoptosis. The core protein inhibits 
DCA induced mitochondrial apoptosis by inhibiting Bcl-2 
family proteins. The viral core protein decreases the expression 
of Bax and increases the expression of Bcl-xl anti-apoptotic 
protein but there occurs no overall change in Bax in between 
cytosol and mitochondria. The increase in Bcl-xL expression 
suppress the cytochrome c release from mitochondria and 
inhibits DCA induced apoptosis. Another research has shown 
TNF alpha induced apoptosis is blocked by HCV core protein 
but sensitizes cells to Fas mediated apoptosis [84,85].

5. The in vitro studies of protein M and protein P of VSV 
rhabdovirus causes mitochondrial apoptotic pathways. The 
virus usually causes apoptosis of neurons [86]. The M protein 
causes the modulation of the BCL-2 family proteins whereas 
the exact mitochondrial apoptotic pathway in case of protein P 
is still unknown [87-90].

6. The protein PB1-F2 encoded by the genome of Influenza A 
virus is a death inducing gene. It mainly induces mitochondrial 
mediated cell death [91]. It has a C-terminal mitochondria 
localization signal, which is conserved in the influenza family 
[92,93]. PB1-F2 while localizing to mitochondria usually 
interacts directly with VDAC1 and ANT3 figure 4 [94]. This 
interaction involves both OM and IM of mitchondria and 
ultimately leads the release of apoptotic protein from IMS 
thereby causing cell death Therefore protein PB1-F2 distorts 
the mitochondrial morphology leading to MML loss and cell 
death.

7. Viruses altering intracellular distribution of mitochondria so 
that the host cell mitochondria is subservient to the needs of 
the virus by HBV

Hepatitis B virus x protein (HBx) is a protein essential for viral 
replication and shows oncogenic properties in animal models 
[95]. The overexpression HBx sensitizes hepatocytes to 
apoptosis induced by different stimuli such TNF-α and TRAIL 
[95]. The overexpression studies of protein HB x has shown 
that protein causes apoptosis by perinuclear mitochondrial 
distribution coupled with MMP (Δψm) loss. Mutant Studies 
of HBx has revealed that hydrophobic residues (MTS) are 
important for mitochondrial localization, MMP (Δψm) loss and 
cell death [96,97]. Moreover, PT inhibitors, antioxidants and 
the anti-apoptotic proteins Bcl-2 and Bcl-xL are able to protect 
HBx expressing cells from death. HBx reportedly interacts with 
at least two mitochondrial proteins, namely heat shock protein 
60(HSP60) [98] and theVDACisoformVDAC3 [97] but still the 
exact mechanism of interaction is not clearly understood. It 
is unknown whether these interactions occur simultaneously. 
The apoptosis induced by HBx protein Viz. mitochondrial 
dysfunction and changes in mitochondrial morphology has 
been found to play a major role in chronic liver disease and 
carcinogenesis [99-102].

8. The vMIA (Viral mitochondrial inhibitor of apoptosis) protein 
of cytomegalovirus (HCMV) is an anti-apoptotic protein which 
blocks the mitochondrial mediated cell death [103] .The protein 
has N terminal mitochondrial localization signal and C terminal 

Virus Protein Intracellular Localization Effect on mitochondrial 
morphology References

HBV X M,N Yes 98-101
HIV Vpr M,N Yes 39
IAV PB1-F2 M,N Yes 93
HTLV-1 P13 II M,N Yes 40
BLV G4 …… Yes 124
AVE VP3. 2C M Yes 112,113
WDSV Orf C M,C Yes 76

HPV type 16 E1˄E4 M 79,81

NNV B2 M,C Yes 123
GSIV ST-Kinase C Yes 122

Table 1: Proapoptotic viral proteins acting on the mitochondria.

Virus Protein Intracellular Localization Protects Cell from References
KSHV K7 or vIAP M, ER, PM TG, TNF-a, anti Fas 110-111.
HCV NS2 ER (M with CIDE-B) CIDE-B 117-121.
Myxoma M11L M STS, anti-Fas, PPIX 112-124
Vaccinia FIL M STS, anti-Fas 71
CMV vMIA M Oxidants, anti-Fas, Bax, tBid, TN,TG, STS, BFA, NFX, CPX, HCQ 102

Table 2: Antiapoptotic viral proteins acting on the mitochondria.
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anti-apoptotic domain which recruits Bax to mitochondria and 
inhibits apoptotic process induced by MMP (Δψm) loss [104]. 
It localizes to mitochondria and interacts with ANT and Bax 
[105,106]. It protects the cells against CD95 ligation [36], over 
expression of Bid [106], staurosporine [105] and oxidative 
stress induced cell death [107,108]. In overall the vMIA protein 
maintains the morphology of mitochondria without MMP 
(Δψm) loss [109]. In in vitro studied, the overexpression of 
vMIA in cells lacking Bax results in mitochondrial alteration 
which indicates the Bax is not involved in vMIA mediated 
mitochondrial cell death. The exact mechanism of how vMIA 
works is not fully understood but it do protects the cells 
from downstream events of apoptosis but not upstream of 
mitochondrial by blocking Cyt c release, caspase 9 activation 
and ATP generation. 

9. KHSV encoded K15 protein possess a special putative repeat 
at its c terminus region. The localization of k15 protein into 
mitochondria binds to pro apoptotic protein Nip3 and anti-
apoptotic protein Hax-1 with sequence similarity to Bcl-2 [110]. 
This makes the infected cells unable to undergo the process of 
apoptosis. Therefore k15 plays a key role in tumorigenesis and 
is usually expressed during latency in infection tumors [111].

10. The in vitro transient study carried upon two AEV virus 
encoded genes Vp3 (structural protein) and protein 2C 
(nonstructural) protein has revealed that both the proteins 
localizes to mitochondria. Vp3 induces Cas-3 mediated cell 
death pathway whereas 2c induces the release of cytochrome 
c by loss of MMP (Δψm) and ultimately activates downstream 
Cas 9 and Cas 3 leading to apoptosis [112,113]. The 2c protein 
has been found highly conserved among the picornaviruses but 
the exact role played by 2c in viral replication is still not clearly 
understood.

11. The protein 7A encoded by SARS-Cov genome is a viral 
apoptosis inducing gene by inhabiting the host anti apoptotic 
gene Bcl-xL [114,115]. Further in vitro studies has shown 
NSP15 protein encoded by SARS virus has been unable to block 
apoptosis induced by staurosporin whereas it blocks apoptosis 
in a dose dependent manner upon overexpression of MAVS in 
cultured cells [116].

12. Viruses using the mitochondrial machinery to modulate 
the host interferon response (HCV virus reducing host beta-
interferon production through the RIG1 pathway):

The protein NS3/4A encoded by the genome of HCV usually 
persists in its host by effecting the interferon production 
involving RIG-I pathway [117,118]. The protein is a serine 
protease which cleaves MAVS at cys-508, which is located near 
its mitochondrial targeting domain. The protease activity makes 
MAVS inactivated by detaches MAVS from mitochondria as 
they are nonfunctional in free form. Further studies [119,120] 
have revealed that the NS3/4A can co-localize to mitochondria 
directly, however a mutation by arginine at cys-508 has shown 
can prevent the cleavage of MAVS from mitochondria [120]. 
Therefore this indicates that HCV hijacks the MAVS of the 
mitochondria to suppress the host immune response.

13. Cleavage of mitochondrial MAVS (mitochondrial anti-viral 
proteins) to paralyze the host immune response by GB virus. 
Similarly the GB virus B belonging to family Flaviviradie 
cleaves MAVS from mitochondria in a similar fashion as does 

by HCV viruses which weakens the host immune response 
be decreasing the interferon production [121]. However the 
mutation studies carried in the HCV has shown the importance 
of cysteine residue in cleaving the MAVS from mitochondria.

14. The GSIV fish virus serine/theroine kinase gene induces 
apoptotic cell death via p53 mediated up regulation of Bax and 
down regulation of Bcl-2 which causes MMP (Δψm) loss [122]. 
This loss of MMP (Δψm) then mediates cell death signaling, 
which in turn results in an activation of the caspase mediated 
cell death pathways at the mid to late stage of viral replication.

15. The fish Betanodavirus non-structural protein B2 is a 
proapoptotic gene. The B2 protein results in mitochondria 
mediated necrotic cell death in grouper liver cells (GL-av). 
The transiently expressed B2 upregulates expression of the 
proapoptotic gene Bax and loss of MMP (Δψm) but not 
cytochrome C- release [123,124]. Taken together, results suggest 
that B2 upregulates Bax and triggers mitochondria-mediated 
necrotic cell death independent of cytochrome c release.

16. The sub major capsid protein, VP3 of aquatic birnavirus 
upregulates the proapoptotic protein Bad in fish and Mouse 
cells. The sub major capsid Vp3 induced up regulation of Bad 
expression alters mitochondrial function including MMP 
(Δψm) loss and activation of initiator caspase 9 and caspase 3 
[125,126].

17. Viruses appropriating the host mitochondrial 
protein p32 to self-replicate (Rubella virus: 
The capsid protein encoded by the genome of Rubella virus 
hijacks the function of p32 mitochondrial matrix protein. 
Studies have shown that the capsid protein possess two clusters 
of arginine residues which are required for its interaction 
with P32 protein. The expression of the capsid protein alone 
in cell culture studies has shown to induce perinuclear 
clustering of mitochondria and the formation of electron-
dense intermitochondrial plaques, which are both observed 
in RV-infected cells [127]. Mutagenic studies in which 
recombinant virus encoded arginine to alanine mutation in 
the p32 binding region of capsid protein resulted in decreased 
mitochondrial clustering, indicating that interactions with 
this cellular protein are required for capsid-dependent 
reorganization of mitochondria and replicated to lower titers. 
Therefore disruption of stable interactions between capsid and 
p32 was found to be associated with decreased production of 
sub genomic RNA which in turn lowers virus replication and 
ultimately leads to less virus progeny [127].

Use of molecular mimicry by viruses to invade mitochondria 

During the process of coevolution some viruses have evolved 
to encode proteins that mimic the activity of their host proteins to 
successfully complete their life cycle without the hindrance of host 
immune response. For example Mimivirus, a member of the newly 
created virus family Mimiviridae, encodes a eukaryotic mitochondria 
carrier protein (VMC-I) [128], this protein mimics the function 
of the host cell’s mitochondrial carrier protein which controls the 
mitochondrial transport machinery in infected cells. Therefore taking 
control of host cells transport of ADP, dADP, TTP, dTTP and UTP in 
exchange for dATP across membrane, for energy production which 
virus uses for replication of its genome to produce new progeny [128]. 
In addition several other proteins encoded by the same virus (L359, 
L572, R776, R596, R740, R824 L81, R151, R900 and L908) with 
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mitochondria localization signals, which suggest that mimivirus has 
evolved a strategy to take over the control of host energy production 
units (mitochondria) for its use to replicate [128]. 

Viruses deplete the host mitochondrial DNA (mtDNA) to 
evade from the mitochondria evoked antiviral host responses

Mitochondria play an important role in host cell survival. In 
addition to respiratory functions, plays a crucial role in cellular 
antiviral defenses including apoptosis and the type 1 interferon 
response. Therefore performing various other functions which make 
them absolutely indispensable to the cell, different viruses appear to 
have adopted the strategy of damaging the host cell mitochondrial 
DNA to take control of the whole cell. Thus the ability of viruses to 
interfere with Herpes simplex virus (HSV) causes both productive and 
latent infections in its human host. The HSV-1UL12 gene encodes two 
distinct proteins: UL12 and UL12.5. The UL12 is an alkaline nuclease, 
and the UL12.5 is an N terminally truncated 500-aa polypeptide that 
lacks the first 126 residues of UL12 [129]. Mostly UL12 is known to play 
a crucial role in viral genome replication and processing [130]. UL12.5 
does not accumulate in nucleus but also nuclease and strand-exchange 
activities [131]. UL12.5 localizes predominantly to mitochondria, where 
it triggers massive degradation of mitochondrial DNA early during 
HSV replication [132]. In addition to that UL12.5 has been found to 
acts directly within the mitochondrial matrix to degrade mitochondrial 
DNA by its nuclease activities [133]. 

In case of HCV infection, the generation of reactive oxygen species 
causes damage to host mitochondrial DNA. The Zta protein of EBV 
interferes with the mitochondrial single strand DNA binding protein 
to reduce the mitochondrial DNA replication and increase in viral 
DNA replication [134]. Interestingly, depletion of mtDNA has also 
been observed in HIV/HCV coinfected humans. However, the fully 
understood biological importance of mitochondrial DNA damage 
during the whole infection cycle still remains confusing.

Conclusion 
Mitochondria are now known as being vital in the regulation 

of cell survival and death. Therefore, an ever-expanding number of 
signal-transducing molecules, like viral effectors have been identified 
to act on mitochondria and to influence MMP (Δψm). Recent studies 
have shown that many viruses encode protein that are targeted into 
mitochondria and control a number of functions, including apoptosis, 
cell growth, ionic haemostasis and signalling pathways. Many virus 
genomes (HIV, HCV, KHSV and CMV) encode various proteins in 
their hosts having both pro and anti-apoptotic activity and activate 
them depending on their need. This highlights the mechanisms by 
which these viruses regulate the dynamic balance between the anti 
and pro- apoptotic Bcl-2 family proteins to increase their chances of 
survival inside the host cell. The overall data summarized in the review 
have shown that mitochondria act as a one of the cherished organelle 
for invading viruses and many virus encoded mitochondrial targeted 
proteins play a significant role in the pathogenesis of the disease they 
cause. Therefore exploring the exact roles of viral genes as well as whole 
viruses in apoptosis at molecular level could lead to the discovery of 
novel therapeutic strategies and pathogenic insights into different viral 
diseases. Essential and important questions, however still remains 
unanswered concerning the molecular mechanisms of MMP (Δψm) 
induced by viral proteins/viruses. Therefore answering these queries 
may result in identification of key MMP (Δψm) regulatory process 
involved in MMP (Δψm) loss and viral host protein protein interactions. 
The prevention and treatment of viral infection is quite challenging 

task but studying virus/host/protein interactions at molecular level will 
help in providing various opportunities for both identifying as well as 
rationally designing new cytotoxic or cytoprotective drugs.
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