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Introduction
The onset of large databases in many sciences and the need to 

organize data into information has lead to heightened interest in the 
analytic and algorithmic methods that guide the analysis of these 
databases. This has arisen organically in fields such as genomics, 
imaging, health outcomes, epidemiology and clinical science [1]. 
Developing stable and interpretable approaches to the organization, 
analysis and modeling of such databases is a challenge, especially 
as they often are not subject to formal design standards during data 
collection.

A very large number of variables and relatively few subjects (large 
p and small n problems) are typical of such data. Often there is limited 
theoretical modeling and much of the research is empirically driven, 
falling under the data science or analytics label [2]. Standard methods of 
statistical analysis often do not hold up well in such settings [3]. Multiple 
comparison issues arise requiring careful interpretation and measures 
of statistical accuracy and significance often lose their meaning.

Correlation and nonlinear relationships may cause difficulty even 
in the application of simple linear models. The presence of correlated 
data structures may increase model sensitivity to outliers and anomalies 
in the data, creating instabilities in the predictive model and affecting 
identifiability [2]. The mis-specified use of linear models when the data 
reflect nonlinear patterns will also create bias and other difficulties [4].

For model-data settings with p>n new techniques and modified 
models have been developed to deal with such restricted or sparse 
situations including least angle regression (LARS) and the application 
of least absolute shrinkage and selection operator (LASSO) [5]. These 
have been shown to be stable in basic settings where linear models are 
appropriate. Approaches which extend older statistical techniques 
include restricted least squares, ridge regression, forward stagewise 
variable selection and principal components [2]. While application 
of new "large data" settings are growing [6], Data Science or BigData 
approaches to identifying patterns in these large sets of collected data 
often reflect a mix of algorithmic methods drawn from engineering, 
computer science and mathematics [7].

Stability in the linear modeling of large databases is a necessity as 
modelling in p>n settings requires a restriction of some sort to provide 
an identifiable model. This is usually a sparsity restriction and we have 
as a typical model; 

=y X β ε+
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for a chosen t. The sparsity restriction imposes onto the linear model 
context the assumption that only a few of the parameter values will 
differ from zero. While a variety of different weightings can be used 
in developing a sparsity restriction, the basic idea of formally limiting 
the number of variables to be considered remains the same. Typically 
a forward stage-wise approach is used to fit these models [5], working 
within the LASSO assumption that only a few key variables are actually 
relevant.

In terms of correlations and associations among the variables, if 
p>n and P is large, work in Hall et al. [8] and Ahn et al. [9] examined
the p>n situation generally and showed that for large p the data vectors 
in such a restricted setting cluster at the vertices of an n dimensional
simplex. Further these n directions lie approximately perpendicular to
each other in forming the simplex structure. This implies that as p→∞
any randomness in the dataset is generated by random rotations of the
n vertices of the simplex. The eigenvalues for example from a principal
components based analysis of the data converge to equality, limiting
the usefulness of clustering methods.

Note that in general the principles of least squares based model 
fitting provide an approach to obtaining optimal estimators and a fitted 
model. In the case of using a sparsity restriction, this is not so direct 
in its application and interpretation. Often there is a phase threshold 
expressed in terms of p and n at or beyond which least squares based 
convergence will not occur [10].

Often more applicable but time consuming is the use of 
algorithmic search techniques [11]. These cycle through all possible 
value combinations for the elements of the unknown β vector until an 
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Abstract
The use of high dimensional linear models is common in large database settings. The linearity of such models 

is often assumed. In sparse settings with the number of subjects (n) less than the number of variables (p) standard 
algorithms include the lars-LASSO approach which often provides stable convergence. In some cases the underlying 
data may be more appropriately modeled with a nonlinear model. The use of a linear model in such cases creates model 
mis-specification and instability for lars-LASSO based approaches. This is studied by using simulations with various 
relative sample sizes, correlation structures and error distributions.
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optimal choice is found, minimizing the sum of squared errors subject 
to the sparsity restrictions. As computers become exponentially faster 
it is worth noting that such conceptually simpler approaches may 
become more common [11].

To examine the stability of sparsity related linear models numerical 
simulation is a useful approach. True parameter values can be defined, 
data generated from the true model and the convergence of the resulting 
estimated model to these true values examined. Nonlinearity and mis-
specification issues that arise in the analysis of large databases using 
linear models can be studied. In many settings the true underlying 
relationship may be a simple nonlinear relationship that can easily 
be missed when using linear methods or associated correlation 
based methods. The use of residuals in developing related diagnostic 
measures of convergence may be difficult as the residuals themselves 
may be biased and correlated [12], not at all i.i.d in nature.

Note that in some cases simulated databases should reflect the 
context of the science within which the statistical models are defined. 
In the context of population oriented genomics a more genetically 
relevant process should be used to generate datasets. These should 
reflect in some way the population genetic structures that exist through 
generations and underlie the analysis of current generations [13]. Here 
we define the simulation setting more broadly and do not use such 
restrictions.

In this paper we study the stability of linear models with sparsity, 
examining the cases n>p, n=p and p>n. The lars-LASSO approach is 
the most directly applicable and stable approach to fitting these types 
of restricted linear models, converging quickly, and is used throughout 
the simulations. The stability of the method is well understood and has 
a geometric basis [5]. Here we generate datasets to model a variety of 
specific distribution and correlation structures in the data, different 
relative levels of p versus n and mis-specification of the model in 
question, examining the frequency with which the lars-LASSO based 
linear model correctly chooses the true set of explanatory variables 
used to generate the response. The usefulness of these approaches in 
p>n high dimensional settings is then discussed.

Model Stability
Model stability in a linear model can be affected by various properties 

of the model-data combination. There are some standard challenges 
and modifications. Sensitivity to rescaling and transformations of the 
response [14], the presence of heterogeneity [15], and use of ridge 
regression to limit effects of collinearity [16]. These are aimed at 
improving the application and stability of the model-data combination 
and resulting fitted model. In the fitting of linear models these 
issues also extend to diagnostic measures for detecting the effects of 
outliers and anomalies in the data [16]. From a broader algorithmic 
perspective, the ordinary least squares estimator can be seen as a very 
simple yet accurate one-step algorithm, guided and justified by calculus 
and geometric concepts.

In fitting higher dimensional linear models, the use of residuals in 
developing diagnostic measures of convergence, a common approach 
in standard linear models, may be inappropriate when p>n as the 
residuals may themselves be biased and correlated, not at all i.i.d. in 
nature. A standard diagnostic measure and fitting criterion is the Cp,m 
diagnostic which is an estimator based on a total mean square error 
(MSE) criterion; 
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where p is the overall number of variables [16]. A property of Cp,m is 
E[Cp,m]=p, so we can use the value of Cp,m to estimate the number of 
variables to include in the model. Typically we determine Cp,m for each 
value of m choosing the value for p at which the Cp,m value stabilizes 
[16]. This is often viewed graphically. Note that the Cp,m criterion is 
based on the assumption that the MSE from the full model is an 
unbiased estimate of σ2.

If the full model happens to contain a large number of parameters 
that are not significantly different from zero, the MSE will be larger 
than the estimate of σ2 obtained from a model in which more variables 
are significant. This is because the variables that are not contributing 
to decreasing the SSEP are still included in the degrees of freedom 
when computing MSE. If this is the case, the Cp,m may not be a suitable 
criterion for determining a useful model [16]. Further if we have a 
nonlinear component to the data affecting model convergence, then 
this caveat regarding the application of Cp,m as a model fitting criterion 
may apply and caution should be exercised.

The LASSO related sparsity restriction that is placed on the set of 
linear models being considered is given by; 
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This places a restriction on the fitting of the linear models(s) being 

considered and will alter the set of Cp,m values to be considered. This is 
easily incorporated into the lars algorithm [17].

In the p>n>m setting there is a de facto limitation on the values for 
Cp,m reflecting the relationship of p to n to m or the set of variables to 
be considered at one time. In the case of underlying nonlinearity, the 
dependence of the measure on the squared length of the orthogonal 
projection (I – P)y where 1= ( )' 'P X X X X−  and 1= [ ,..., ]pX x x , gives 
rise to difficulties as the mis-specified linear model will be biased 
and as such the mean value of Cp,m may not be useful as a measure 
of p [16]. Thus the criteria can be easily misapplied when linearity 
cannot be assumed. If this criteria is an essential aspect of the model 
fitting approach under assumed linearity, the chosen models may be 
misleading if the true underlying model is nonlinear. Here we apply the 
Cp,m criteria throughout for consistency.

Results of Numerical Study
The lars-LASSO algorithm was used to fit all models. This is a very 

stable algorithm with convergence occuring quickly, so simulations were 
repeated only 30 times in each setting reported here. All models were 
examined using centered data. Several distributions along with various 
standard correlation structures (auto-regressive (AR), compound 
symmetry (CS) and diagonal heterogeneity (DH) with correlations 
given by 0.8|i–j| and 0.2|i–j|) were examined for various levels of p versus 
n. Again, the fitting criteria used throughout for comparability is the 
Cp,m criteria. The overall set of distributions, correlation structures, 
levels of (n,p) and models considered are summarized in Table 1.

Using a response y generated from the linear model 

1 3 6 7 9 10= 1 5.0 4.7 7.8 0.6 0.5 0.4y x x x x x x+ + + + + +

in combination with various correlation structures and assumed 
normal error for all variables x1 to x10, the simulation results given in 
Table 2 were observed.

The pattern in this table reveals a large amount of stability in the 
predictive accuracy of the lars-LASSO approach across various correlation 
structures. There was some observed instability in models with p >> n and 
n small and this occured across all correlation structures considered.
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Simulations using the same correlation structures but with 
multivariate-t and skew-normal multivariate error distributions were 
then conducted and the results shown in Tables 3 and 4. Again there 
was weakness in variable selection with n small and p >> n across all 
correlation structures. The more robust error distributions did not alter 
the general pattern.

The same basic linear model fitting was then examined from the 
perspective of total variation explained, with results given in Table 
4. For p=5000 and n=100, 250 and 500 using the same set of error 
distributions and correlation structures, the number of principal 
components [18] accounting for 75-80% of variation was determined 
for all models. Note that in the p>n case the number of principal 
components is limited by the sample size n and the percent reported 
here is the number of principal components divided by the number of 
available eigenvectors.

As shown in Table 5 the percent of non-zero principal components 
required to explain 75-80% of total variation was in the 45-68% range 
of non-zero principal components. For all distributions and correlation 
structures, as n decreased in relation to p, the percent of principal 
components required to explain the given level of total variation in 
the data increased. This reflects the geometric arguments mentioned 
in [8,9] as the principal components here converge towards equality 
and more of them are required to explain a given level of total variation.

The compound symmmetry correlation structure leads to slightly 

lower levels of variation explained. This pattern held for all error 
distributions with slightly lower levels in the multivariate-t distribution 
case where outlier generation is more common.

Overall, the results reported in Table 1 through Table 4 indicate 
the stability of the lars-LASSO stagewise approach in linear models, 
especially when p ≤ n. For levels of p >> n the predictive aspect of the 
model is weak across the various types of correlation structures and 
error distributions considered.

Nonlinearity and model mis-specification

The use of a linear model when underlying nonlinearity exists in 
the data can lead to misleading results. The curvature of the underlying 
nonlinear model can be substantial and effect the accuracy of the model 
[19]. This was examined here using a simulated partially nonlinear 
regression model of the form; 

1 2 3 6 7 9 10= 1.4 ( 4.5 6 ) 3.2 2.3 1.1 0.8 0.6 .y exp x x x x x x x− − + + + + +

Restricting our study to cases of p ≥ n, nonlinearity had a strong 
effect on the model fitting, even when limited to only a few variables. 
We deliberately mis-specified the model using a linear model for 
fitting when the underlying relationship in the data was nonlinear with 
the Cp,m criteria used for comparative purposes, but may this not be 
stable for variable selection. Thirty replications were simulated using 
n=(10,30,50) and p=(30,300) and a similar set of error distributions and 
correlation structures as in Tables 1-4 with a linear model assumption.

Distributions Correlation Structures P n Model
Normal AR, CS, DH 30, 300 50, 30, 10 Linear, Non-linear

Multivariate-t AR, CS, DH 30, 300 50, 30, 10 Linear, Non-linear
Skew-Normal AR, CS, DH 30, 300 50, 30, 10 Linear, Non-linear

Table 1: Summary of simulation studies.

Correlation Type, n, p X1 X3 X6 X7 X9 X10 Other
AR, 50, 30 30 30 30 30 30 30 0
AR, 30, 30 30 30 30 30 30 30 0
AR, 10, 30 8 8 24 16 5 4 21
AR, 50,300 26 26 29 29 29 22 7
AR,30, 300 27 29 30 30 28 27 2
AR,10, 300 1 2 3 8 6 3 21
CS, 50, 30 30 30 30 30 30 30 0
CS, 30, 30 30 30 30 30 30 30 0
CS, 10, 30 11 16 20 25 15 8 23
CS, 50,300 28 26 30 28 28 26 7
CS,30, 300 30 30 30 30 29 28 1
CS,10, 300 3 1 8 1 3 2 30
DH1,50,30 30 30 30 30 30 30 0
DH1,30,30 30 30 30 30 30 30 0
DH1,10,30 12 6 17 22 10 6 22
DH1,50,300 27 27 29 29 29 28 2
DH1,30,300 20 19 27 22 15 14 9
DH1,10,300 1 0 7 2 1 0 23
DH2,50, 30 30 30 30 30 30 30 0
DH2,30, 30 30 30 30 30 30 30 0
DH2,10, 30 13 7 19 18 10 6 22
DH2,50,300 27 27 28 29 27 24 6
DH2,30,300 19 18 27 26 16 13 9
DH2,10,300 0 0 10 2 2 0 24

AR: Auto-Regressive, CS: Compound Symmetry, DH1: Diagonal Heterogeneity with correlation given by 0.8|i–j|, DH2: Diagonal Heterogeneity with correlation given by 
0.2|i–j|.

Table 2: Results of Simulations for Various (n,p) Combinations Using A Multivariate Normal with Several Correlation Structures, 30 Replications and Linear Model. 
Generated response and true model: y=1+5.0x1+4.7x3+7.8x6+0.6x7+0.5x9+0.4x10.
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The results for the nonlinear models are given in Tables 6-8.

While some discussion of error distribution and correlation 
structure may be useful, we can see that the mis-specification of a 
linear model when the true model is nonlinear gives poor results. 
Variable selection is uniformly poor and the rate at which the model 
picks up variables that have little or no support in the actual simulation 
is relatively high. The cause of this is the nature of the lars algorithm 
which uses orthogonal projections of the remaining residual vectors 
at each stage to find the next predictive variable to which it is highly 
correlated.

In the linear model setting this algorithm creates a fast stepwise 
convergence to an optimal answer. However the use of both orthogonal 
projection and correlation is challenging when nonlinearity is present. 
Nonlinear patterns are less likely to be detected when correlation is 
present and orthogonal projections onto linear subspaces are not 
appropriate by definition when model fitting with nonlinear models 
[20]. In addition, as noted above the Cp,m criteria is poorly defined and 
can be misleading.

Mis-specification and sparsity restriction

The issue of mis-specification arises as there is no guarantee that 
the use of a linear model will necessarily agree with the underlying 
data structure, as seen above. Problems will arise if the data are actually 
nonlinear in pattern. This is common in many natural phenomena, 
especially in relation to growth patterns. When this is the case models 
that focus on linearity may miss non-linear patterns in the data. The 
effects of nonlinearity can be difficult to deal with as the least squares or 

maximum likelihood estimates in fitting models may be correlated and 
correlation can be very misleading in the presence of noninear patterns. 
Thus the effects of mis-specification in regard to a small number of 
variables will impact the fitting of the entire model.

To more formally address the mis-specification issue with sparsity 
we express the linear model as function of two sets of variables; 

1 1 2 2= =y X X Xβ ε β β ε+ + +

where initially n>p. Let us assume that the key significant variables 
are grouped in the X1 (n × p1) matrix with p1 variables, the X2 (n × p2) 
matrix has p2 additional variables, where p1 << p2 and p1 + p2=p. The 
error term ε (n × 1) is assumed to have the distribution 2(0, )N Iε σ

. 
The goal here is to identify the variables in the X1 matrix. Now assume 
the aspect of interest is a nonlinear model underlying the X1 set of 
variables. In this setting we wish to assess to what extent the LASSO [5] 
or related technique may not detect the set of variables embedded in 
the nonlinear model. We re-express our initial model as; 

1 1 2 2= ( )y F X Xβ β ε+ +

=1
| |<

m

i
i

tβ∑
where F(X1 β1) is a nonlinear model for the X1 subset of variables and 
we focus the sparsity restriction on the X1 set of variables, selecting 
k<p1 non-zero coefficients in the sparsity restriction. Replacing F (X1 
β1) with its Taylor expansion about β10 to the second order we obtain; 

1 10 1 1 1 10 2 2= [ ( )( )]'y X F X Xβ β β β β ε+ − + +                (1)

=1
| |<

m

i
i

tβ∑                     (2)

Correlation 
Type, n, p X1 X3 X6 X7 X9 X10 Other

AR, 50, 30 30 30 30 30 30 30 0
AR, 30, 30 30 30 30 30 30 30 0
AR, 10, 30 3 17 24 17 13 6 23
AR, 50,300 29 29 29 27 27 24 8
AR,30, 300 28 28 29 30 24 27 6
AR,10, 300 1 3 11 4 3 1 22
CS, 50, 30 30 30 30 30 30 30 0
CS, 30, 30 30 30 30 30 30 30 0
CS, 10, 30 4 12 12 12 13 4 28
CS, 50,300 30 29 30 29 29 26 3
CS,30, 300 27 25 30 30 22 27 6
CS,10, 300 0 3 6 3 1 0 30
DH1,50,30 30 30 30 30 30 30 0
DH1,30,30 30 30 30 30 30 30 0
DH1,10,30 12 7 14 18 9 4 21
DH1,50,300 27 25 30 28 28 26 7
DH1,30,300 22 16 25 21 11 10 11
DH1,10,300 2 0 7 3 0 0 26
DH2,50, 30 30 30 30 30 30 30 0
DH2,30, 30 30 30 30 30 30 30 0
DH2,10, 30 12 7 17 15 9 4 23
DH2,50,300 26 26 27 29 24 21 8
DH2,30,300 20 16 26 22 13 10 10
DH2,10,300 2 0 7 1 0 0 25
AR: Auto-Regressive, CS: Compound Symmetry, DH1: Diagonal Heterogeneity 
with correlation given by 0.8|i–j|, DH2: Diagonal Heterogeneity with correlation 
given by 0.2|i–j|.

Table 3: Results of Simulations for Various (n,p) Combinations Using A 
Multivariate-t Distribution with Several Correlation Structures, 30 Replications, and 
Linear Model: Generated response and true model: y=1+5.0x1+4.7x3+7.8x6+0.6x7
+0.5x9+0.4x10.

Correlation 
Type, n, p X1 X3 X6 X7 X9 X10 Other

AR, 50, 30 30 30 30 30 30 30 0
AR, 30, 30 30 30 30 30 30 30 0
AR, 10, 30 7 14 23 25 9 6 12
AR, 50,300 29 24 29 28 25 25 10
AR,30, 300 27 27 30 28 28 25 4
AR,10, 300 2 3 18 10 6 0 21
CS, 50, 30 30 30 30 30 30 30 0
CS, 30, 30 30 30 30 30 30 30 0
CS, 10, 30 11 20 26 18 14 5 19
CS, 50,300 28 28 26 29 29 26 7
CS,30, 300 19 20 29 25 23 20 9
CS,10, 300 4 5 8 4 1 0 30
DH1,50,30 30 30 30 30 30 30 0
DH1,30,30 30 30 30 30 30 30 0
DH1,10,30 11 12 17 18 10 11 12

DH1,50,300 29 29 30 29 29 30 2
DH1,30,300 21 19 30 24 18 16 6
DH1,10,300 2 1 6 5 4 3 23
DH2,50, 30 30 30 30 30 30 30 0
DH2,30, 30 30 30 30 30 30 30 0
DH2,10, 30 11 12 15 18 11 11 12
DH2,50,300 29 29 30 29 29 30 3
DH2,30,300 21 19 30 24 16 14 6
DH2,10,300 3 1 8 3 4 3 22

AR: Auto-Regressive, CS: Compound Symmetry, DH1: Diagonal Heterogeneity 
with correlation given by 0.8|i–j|, DH2: Diagonal Heterogeneity with correlation 
given by 0.2|i–j|.

Table 4: Results of Simulations for Various (n,p) Combinations Using A Multivariate 
Skew Normal Distribution with Several Correlation Structures, 30 Replications, and 
Linear Model: Generated response and true model: y=1+5.0x1+4.7x3+7.8x6+0.6x7
+0.5x9+0.4x10.
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If we were to apply a linear model to this setting we would in 
essence be using a local linear approximation rather than the true 
model, giving; 

1 10 2 2=y X Xβ β ε ∗+ +

=1
| |<

m

i
i

tβ∑

where 1 1 1 10= ( )( )'F Xε ε β β β∗ + −  and in fitting this, we will both 
potentially miss the nonlinear aspect of the data and apply an approach 
which employs a biased error distribution 2

1 1 1 10( ( )( ), )'N F X Iε β β β σ∗ − .

In the p>n setting sparseness will not help alleviate the mis-
specification issue. Indeed the mis-specification effect may be 
augmented over the restrictions implicit in the use of the sparsity 
restriction. The Cp,m criteria defined here in this context will not be 
unbiased [16] and use of residuals in diagnostic measures may be 
inappropriate as noted above.

Note that if the underlying model is mis-specified, the sparseness 
restriction may not actually make sense, as it applies a linear scale to 
the relative importance of the estimated parameter coefficients. Note 
further that the centering of the data, a key component in the LASSO-
lars algorithm [5], may actually increase the bias in the model if there 
is underlying nonlinearity [21]. Indeed the effect of centering in such 

Distribution Covariance Structure
Number of Principal 

Components (% Non-zero 
components)

Normal

Autoregressive
68 (68%)
159 (64%)
293 (59%)

Compound Symmetry
44 (44%)
102 (41%)
187 (37%)

Diagonal Heterogeneity
70 (70%)
166 (66%)
312 (62%)

Multivariate-t

Autoregressive
50 (50%)
114 (46%)
216 (43%)

Compound Symmetry
29 (29%)
57 (23%)
113 (23%)

Diagonal Heterogeneity
51 (51%)
117 (47%)
227 (45%)

Skew-Normal

Autoregressive
65 (65%)
149 (60%)
264 (53%)

Compound Symmetry
60 (60%)
136 (54%)
242 (48%)

Diagonal Heterogeneity
67 (67%)
158 (63%)
289 (58%)

Table 5: Number of Principal Components Accounting for 75-80% of Total Variation 
for p=5000 and (n=100, 250 and 500).

Distribution Covariance 
Structure n p

Normal

Autoregressive

10 30 1 0 1 2 2 6 4
10 300 0 0 0 0 0 0 0
30 30 11 9 22 16 10 13 13
30 300 0 0 2 0 2 2 1
50 30 5 8 22 18 11 12 13
50 300 0 0 0 2 3 3 3

Compound 
Symmetry

10 30 2 2 5 7 2 2 2
10 300 0 0 0 0 0 0 0
30 30 16 5 20 10 10 18 10
30 300 1 0 1 7 0 1 1
50 30 8 5 23 13 6 15 12
50 300 0 0 6 1 10 1 4

Diagonal 
Heterogeneity

10 30 0 0 5 6 1 5 8
10 300 0 0 0 3 0 0 0
30 30 11 5 15 16 14 11 14
30 300 0 0 1 0 3 7 1
50 30 0 7 15 11 14 20 12
50 300 0 0 2 0 0 2 2

Table 6: Variable Selection Rates for 30 Replications, Normal Error and Various 
Correlation Structures.

Distribution Covariance 
Structure n p x1 x2 x3 x6 x7 x9 x10

Multivariate-t

Autoregressive

10 30 0 0 0 3 3 7 10
10 300 0 0 0 0 0 1 1
30 30 10 9 16 15 17 21 20
30 300 0 0 0 2 0 0 2
50 30 0 0 3 2 3 6 0
50 300 0 0 0 5 6 12 1

Compound 
Symmetry

10 30 0 0 4 5 0 8 6
10 300 0 0 0 0 0 0 0
30 30 7 8 11 18 17 18 15
30 300 0 0 0 0 1 0 0
50 30 8 4 9 10 21 16 12
50 300 1 0 1 0 6 8 1

Diagonal 
Heterogeneity

10 30 0 0 5 10 7 10 11
10 300 0 0 0 0 0 1 3
30 30 10 14 14 20 19 21 17
30 300 0 0 2 4 0 3 1
50 30 12 11 21 19 17 10 17
50 300 0 0 0 3 0 1 2

Table 7: Variable Selection Rates for 30 Replications, Multivariate-t Error and 
Several Correlation Structures.

Distribution Covariance 
Structure n p x1 x2 x3 x6 x7 x9 x10

Skew-Normal

Autoregressive

10 30 0 0 1 3 7 3 6
10 300 0 0 0 0 0 0 0
30 30 10 12 15 9 13 13 19
30 300 0 0 0 0 0 1 5
50 30 2 6 2 29 15 22 4
50 300 0 0 0 6 7 1 1

Compound 
Symmetry

10 30 0 0 5 5 2 10 2
10 300 0 0 2 0 1 0 0
30 30 12 11 13 12 17 9 16
30 300 0 0 0 0 0 3 1
50 30 0 6 5 29 13 9 0
50 300 0 0 0 2 3 3 3

Diagonal 
Heterogeneity

10 30 0 0 3 1 3 11 2
10 300 0 0 0 0 1 0 0
30 30 11 11 14 12 12 14 18
30 300 0 0 0 1 0 3 1
50 30 1 2 2 28 13 7 0
50 300 0 0 0 6 2 1 0

Table 8: Variable Selection Rates for 30 Replications, Skew-Normal Error and 
Various Correlation Structures.
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a mis-specified settings may alter depending on each set of variables 
considered in the stagewise fitting process.

Discussion
The simulation and study of model fitting behavior in high 

dimensional settings is an interesting use of the computer as a tool of 
scientific inquiry. Simulation allows for the study of algorithm behavior 
across a wide set of assumptions. Here the accuracy and stability of the 
lars-LASSO algorithm in linear models with n>p and p>n to a lesser 
extent is demonstrated in this manner. The number of replications has 
been kept fairly small due to the known stabiility and accuray of the 
algorithm investigated.

Use of mis-specified nonlinear models can lead to a high level of 
observed instability and model sensitivity. The assumption of linearity 
in large databases is often a common approach to the initial modeling 
of the variables measured. If there is a scientific context for the variables 
in question this should be reviewed to ensure that a linear scaling is 
appropriate. Note that it may be necessary to rescale some variables 
before a linear predictive model is appropriate for application.

Standard diagnostic assessments of model robustness and fit must 
be carefully interpreted in these settings. Numerical studies conducted 
here show that nonlinearity and p>n are a potential basis of predictive 
error in high dimensional model settings. Further potential mis-
specification issues may be present, affecting the accuracy of predictive 
linear models. The lars-LASSO model can be extended by altering the 
definition of sparsity, but this does not necessarily imply robustness to 
nonlinear specification and correlation structure.
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