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Abstract

In the dementia area it is often of interest to study relationships among regional brain measures; however, it is often
necessary to adjust for covariates. Partial correlations are frequently used to correlate two variables while adjusting
for other variables. Complete case analysis is typically the analysis of choice for partial correlations with missing data.
However, complete case analysis will lead to biased and inefficient results when the data are missing at random. We
have extended the partial correlation coefficient in the presence of missing data using the expectation-maximization
(EM) algorithm, and compared it with a multiple imputation method and complete case analysis using simulation studies.
The EM approach performed the best of all methods with multiple imputation performing almost as well. These methods
were illustrated with regional imaging data from an Alzheimer’s disease study.

Keywords: Partial correlation; Fisher-z transformation; Missing data;
Missing at random; Expectation-maximization algorithm; Alzheimer’s
disease

Introduction

Recent advancements have fueled biomarker and imaging marker
data collection in medical research studies. Associations between these
markers need to be established first prior to understanding temporal
relationships and assessments being made about predictions. In the
early stages of medical research, data analysis is exploratory and often
the direction of relationships between variables is unknown. A first
step in medical research is to identify which markers are associated
and correlation coefficients can assist in statistical assessments of this
endeavor. For example, in the neuropsychological area and Alzheimer’s
disease area we often are interested in how various brain regions are
structurally and functionally related. To provide a hint of the disease
pathway, studying neurodegenerative diseases, particularly Alzheimer’s
disease, am006Fng those who are cognitively normal may shed light
on the earlier stage of the disease. Obtaining some knowledge of how
various regions are structurally related can point us to future research
directions.

A common measure to assess whether imaging markers are related
is the Pearson correlation coefficient; however it is often necessary to
adjust for other variables such as demographic and other marker data
to remove potential confounding effects. Partial correlations can be
utilized to correlate two variables while adjusting for other variables.
Often times, data are partially missing. Missing data approaches have
mainly been devoted to regression models with minimal work done
in the correlation area. No statistical methods have been developed to
handle missing data in a partial correlation analysis. Our objective here
is to develop statistical methods for partial correlations with missing
data.

Missing data is such a common scenario in medical studies.
Standard practice for correlations and partial correlations is to analyze
only the data where all observations are fully observed. This is known
as complete case analysis. The mean is typically of interest and has been
addressed through estimating the regression coeflicient from regression
[1,2] or estimating the mean from a bivariate distribution [3], typically
where the distribution is bivariate normal and the data are continuous.
Here, we are interested in the second order statistics not the first order
statistic.

Some work has been done with correlation estimation and missing

data [3,4], however no literature has been devoted to estimating the
partial correlation with missing data. Minami and Shimizu [5] have
proposed a maximum likelihood estimate and restricted maximum
likelihood estimate for a correlation coefficient in a bivariate normal
distribution. He and Nagaraja [6] proposed using estimation based
on the concomitants of order statistics from the bivariate normal
distribution. Their problem was specifically for a continuous variable
and rank-based variable. In a related area, Truxillo [7] examined
maximum likelihood estimation and multiple imputation to estimate
the mean and covariance parameters where there is missing data.

In the presence of missing data, complete case analysis can lead to
biased and ineficient results [1]. An Alzheimer’s disease data set with
missing imaging markers motivated us to extend the partial correlation
coefficient using maximum likelihood estimation. We compare the
expectation-maximization (EM) algorithm to complete case analysis
and multiple imputation. We will limit our method to data that are
missing at random where the missing data pattern is permitted to be
nonmonotonic. Properties from these missing data methods will be
compared with simulation studies. These missing data methods will be
demonstrated using volumetric, diffusion tensor imaging (DTI), and
Pittsburgh Compound-B (PIB) data from the Adult Childrens Study
conducted at the Washington University Knight Alzheimer’s Disease
Research Center.

Methods
Notation and methodology

We define our data to be three continuous variables (X, Y, Z) where
we are interested in correlating X and Y adjusting for Z. Index i=1,..,n
indicates the ith subject where there are n subjects. We assume that
V=(X, Y, Z) has a multivariate normal distribution, i.e. V~MVN(,X).
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The likelihood is
LTl

where D=3 is the dimension of V. The log-likelihood is

s e[ Loy = )| 0

I= Z":[f(D/Z)log(%r)f(l/Z) log|Z[—(1/2)(v,—w) "' (v, 7u):|. (2)

The covariance matrix is

2
g, 0.0,p, 0.0.0.
_ 2
X=|o0o,p, o, 0,0.0,. |- (3)
2
0.0.p. 0,0.0, g.

The partial correlations of x and y adjusting for z can be estimated by
o = Py = PP,
VN @
where the correlation between two variables x and y is

— X

Py = o0, : (5)

Since our data are multivariate normal the maximum likelihood

estimate (MLE) of themeanis v = lz v, and the MLE of the covariance
nis

matrix, %, is the cross product £ ==3"(v,~¥)' (v, —¥). For our paper we
nial

assume the data are missing at random where the missingness depends
on the data that are observed and not on the data that are missing. The
missing indicator for x is T foryis r, and for zis T, where r =1 indicates
not missing and r,=0 indicates missing for d=1,2,3. The missing data

modelis p(r,7,7 1 x,v,2) = p(; | ¥, 2,1, 1) p(1, | %, 2,1) p(r;, | X, ¥) .

Pearson correlation and Fisher-z

The main focus of the paper is to estimate the partial correlation.
Two strategies are used to estimate the coefficient and its associated
variance: 1) Pearson’s correlation [8]; and 2) Fisher-z transformation
[9-11]. It has been shown that the Pearson correlation coefficient has an
approximate t-distribution with (1—-k-2) degrees of freedom [8] where
k=1 is the number of variables partialled out where the standard error is

2
sE=Y12" ©)
n-3

The second approach is using the Fisher-z. The Fisher-z
approximation [9,10] is a common measure used for estimation and
inference of correlations and partial correlations. RA Fisher discovered
the correlation coefficient is not normally distributed [9,10]; and he
suggested a function of the correlation coefficient that is approximately
normally distributed. A property of the Fisher-z transformation is that
its variance is a function of the sample size. When using the Fisher-z
transformation the correlation is first transformed:

Ll A |

T=—

2 \1=p,. 7
For the Fisher-z transformation, 7 —7 has an approximately normal
distribution of N(0,1/(n-(p-gq)-3)) [8], where p—q is the number of

variables conditioned on. In this case we are only conditioning on 1
variable and the standard error is

SE = fJ(n-1-3). ®)

EM algorithm

Maximum likelihood estimation [1,12-14] is an approach to
estimate parameters from the multivariate normal distribution in
the presence of missing data. However, if the missingness pattern
is nonmonotonic then the maximum likelihood estimate (MLE) is
not tractable when factoring the likelihood. If the likelihood cannot
be factored the parameter estimates will not be identifiable. An
algorithm that can solve the MLE in general missing data problems is
the expectation-maximization (EM) algorithm. Although the EM is
a powerful tool to solve parameter estimates it can have convergence
issues and can be slow.

The joint probability of V is r(v;0)=p(v,, 19)p(v,,1V,.9) and
the log-likelihood for complete data is of the form [1]

Holv)=l(o]|v, )+Inp(v,. [V, .0) )

where ¢=(w,2), v=(v,, v ) and v andv_._denotes the observed and
missing components of v. For the EM algorithm, the E-step at the kth

iteration is [12,13]
Q(ole")=E(!(g:v)1v,...0") (10)

When missing data occurs at the ith observation, we take a sample

. . . *)
Z,5--5Z,, of size m, for the ith observation from P(Vm, | Vo @ )

using the Gibbs sampler [13]. For continuous data, the E-step is [12,13].

Q(ele")= Z Zl(ﬁpll,,,vm,) (11)

The M-step of the EM uses standard weighted methods, specifically the
weighted mean and weighted covariance here, to estimate the MLE of
the parameters at the (k+1) iteration, ¢**". The information matrix is
of the form [12,13].

16)=-Q@)- Z ZS(cp\z,,v 8.8z, )+ZQ(¢)Q(<p) (12)

R

o . _olplz,,v,,,)
where @ are estimates at convergence, Sl(q)ll,,,Vnh,,,)fT >
. o 1wz, ) .. =1 & l(e|z,,v, )
Q, ‘P“P() - if2 ¥ obsi and ()} — L i Yobsi)

( ) m /Z‘ op Q(tp @ ) Z‘m ; 0QoQ'

The EM algorithm is based on the MLE and the distribution of (¢ —¢) is

asymptotically normal where the mean is 0 and variance is I [1]. A
consistent estimator of the variance is the sum of scores squared estimate,
ZQ(‘P)Q @" This strategy will let us avoid further complications in
derlvmg the second derivatives to estimate the variance.

To estimate the variance for the Pearson partial correlation we
use the following details of the sum of scores squared approach and
delta method. The delta method is used to estimate the variance of the
Pearson’s partial correlation:

{pw p,. p,. } . [%,.: P, . 8/),9,,}’ 13)
o, p. Ip,. op, Op. Op,.
where the partial derivatives are

0Py

op, = i-p. (9
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op,. _—pA1=P1=p2 +(p, —pop ). (1-p2) " 1= pL
. (imrionr) ’ (15)

and

Op,. _—PAI-P1-p. +(p, — PP )P, (1-p2) " 1=p2 (16)
o, rdr)

The information matrix is calculated with the second derivatives
of the log-likelihood. However, here I is estimated by using the sum
of scores squared. The sum of scores squared requires only the first
derivatives of the log-likelihood. The first derivatives are

gfl:iiiyl((zy,vﬂm)—u) (17)

u =1 M, =

2SS Z e [ 2 v )w)| - 18)

0 [
f) 0% O 51 5102
where e:(o‘v,gvyo'z’pw,pﬂ’py:), E1og\z\:zr[2’ %), and aez'_ > aezl

13 @12, %)
mr' J=t aq)

scores squared, >'Q.($)Q,(®), is a consistent estimate of the observed
i=1

[8]. The scores are . The sum of

Q (ol0")=

information [15,16].

A similar approach is employed for the Fisher-z transformation of
the Pearson partial correlation. We use the delta method to estimate
the variance of the Fisher-z transformation of the Pearson partial
correlation:

ﬂﬁﬂrrl 0Oz or ot (19)
op, . op, op, op. op.|

where the partial derivatives are
or 10p,. 1 1
== + ; 20
o, 20p, (100 ) (=0.) w
or _10p,. 1 1
=T + > (21)
op. 20p. |(1+p,.) (1-p,.)

and
or 10p,. 1 1
" ) +
op. 20p. |(1+p,.) (1-p,.)| (22)

As previously discussed the sum of scores squared, ZQ@’)Q@)’ ,is a

consistent estimate of the observed information and is used.
Multiple Imputation

Multiple imputation (MI) [17-21] is a popular missing data
technique because it is included in many statistical packages. Essentially,
multiple imputation is an approach that replaces the missing data with
multiple simulated values. As the concept has been evolving since the
1970s, a number of researchers have shown the usefulness of multiple
imputation and proven that statistical properties are improved in many
settings [17-20]. The approach we consider is an imputation method
developed by King et al. [17] that imputes the missing data with a
bootstrapped expectation maximization sampling algorithm rather

than using the more traditional Markov-chain Monte Carlo-based
imputation-posterior (IP) approach. The Amelia II library [17] was
selected for the imputation schemes since it is faster than other existing
software based on IP and leads to similar results. A disadvantage of
imputation occurs when the imputation model is misspecified, resulting
in estimates that will be biased and inefficient [22,23].

The basic idea of imputation is the missing variables are modeled
jointly conditional on the fully observed data to provide a joint
conditional probability for the posterior distribution. When a subject
has only one variable missing only that missing value is filled in. When
all 3 variables are missing none of the values for that subject is imputed.

The principal idea is to create M data sets of repeated imputations,
m=1,..,M. We will refer to both the Pearson partial correlation and the
Fisher-z transformation as coefficients. Based on these M imputed
data sets, the coeflicient estimates and their variances will be estimated
for each data set: (ﬁ*,,...,ﬁw) and (U.,..,U.,). The Pearson partial
correlation calculated with equation (4) and its variance calculated
with equation (6) are estimated for each completed data set. The
Fisher-z transformation calculated with equation (7) and its variance
calculated with equation (8) are estimated for each completed data set.
Upon obtaining these M coeflicient estimates and their variances, the
equations listed directly below are used for the multiple imputation
estimates of the coefficient and its variance. The average of the M
coeflicient estimates is [1,18]

_ Mf
Hu=2 —= 23
2w @9

The average of the M variances is [1,18]

Un=y -
V=2 (24)

m

The between-variance is [1,18]

3, =3 (A, ) (i, -1,) [ -1). (25)
The total variance of the coefficients is [1,18]
T,=U,+(1+M")H, . (26)

Inference for multiple imputation is based on a t-test with v degrees

. H, 10,
of freedom where the t-statistic I is and v=(M —1)[“ Ml 5_(‘1]

M

[1,18].
Simulation Study

We performed simulation studies to determine the finite sample
properties of the various methods. The methods compared here
are analysis on the full data (Full), complete case analysis (CC), the
expectation-maximization algorithm (EM) and multiple imputation
(MI). The full data is the generated data before deletion of missing
values. First we estimated the Pearson partial correlation and its
variance. Then we estimated the Fisher-z transformation and its
variance. For simulation studies, we compared the mean of bias (bias),
mean of the standard error (SE), square root of the mean squared error
(MSE), relative efficiency (RE), and 95% coverage probabilities (95%
Cov). Since all methods are not unbiased we used the MSE to calculate
the relative efficiency where the MSE of each missing data method is
compared to the MSE without missing data (Full). Each simulation
study has 1000 replications.
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We generated 3 variables to have a multivariate normal distribution,
where V~MVN(0,X), all the variances are 1 and the correlations,
partial correlations, and Fisher-z transformation,(p,, p. p,, p, > 7,,.)
considered are: (.105, .03, .21, .1,.1), (.35, .1, .15, .34,.36), (.64, .5, .4,
.55,.63), (.9, .83, .7, .8,1.1). We considered samples sizes of 50 (results
in Supplementary Material Section), 200 (results in Supplementary
Material Section), 500 and 1000 (results in Supplementary Material
Section) and percentage of missingness of 20%, 35%, and 50%. The
type of missing data mechanism is missing at random, where the
missingness depends on the observed portion of the data and not on
the unobserved portion of the data.

The missing data model we used to generate the missing data was
p(rn, | x,,2) = p(r | vz, 1) p(r, | X, 2,1) p(ry | x, y) where 1, is the
missing indicator for x, r, is the missing indicator for y, and r, is the
missing indicator for z.The missing at random mechanismisspecified by the
models: logit(p(r | y,2,15,7)) = Bo, + B,y + B2+ B 1+ B, r
logit(p(r, | x,2,7,)) =P, + fox+ B2+ 15, and logit(p(r | x, )
= B, +B,x+p,,.y. In these missing data models, all the regression
coeflicients except for the intercepts were fixed to be 1. Refer to Table
1 for the intercept values of the missing data models for each partial
correlation.

Results for n=500 are reported in Tables 2-5, where Table 2 contains
results for p..=L Table 3 contains results for pwz.34, Table 4 contains
results for p =.55, and Table 5 contains results for p_ =.8. Regardless
of the amount of missing data and coefficient type, MI and EM both
had no bias or very small bias, whereas the CC approach was biased.
As the proportion of missingness increased so did the bias. As the
correlation increased the Fisher-z had slightly more bias than the
Pearson correlation approach. When the correlations were moderate

Intercept values

(Do PPy T, )

(.105, .03, .21, .1,.1)
20% missing

(B, =3.1B,,=24.8,, =14)

35% missing

(B, =20.8,,=16,5,, =0.6)
(B, =15.8,,=05.8,, =0)

50% missing

(.35, .1, .15, .34,.36)
20% missing

(B, =32.5,, =248, =1.3)

35% missing

(B, =20.8,,=1.7.5,, =0.6)

50% missing ( B, =148, =064, = o)

(.64, .5, 4, .55,.63),
20% missing

(B, =33.8,,=255,,=15)

35% missing

(B,, =2.0.8,, =1.7,8,, =0.6)
(8,,=13.5,,=05.5,,=0)

50% missing

(.9, .83,.7,.8,1.1)
20% missing

(B, =34.8,,=24.5,, =16)

35% missing

(8., =2.0,8,,=1.7.5,,=0.6)
(B, =1.2.5,, =048, =0)

50% missing

Table 1: Intercept values for the missing data models from simulation studies

(Pysperp,.)=(-105,03,21),p, =Lz, =.1n=500

Pearson correlation Fisher-z
Full CC EM MI Full CC EM MI
20% missing
E(Bias) -0.001-0.044 |0.002 0.003 |-0.001-0.044 0.003 0.003
E(SE) 0.045 0.05 |0.051 0.051 |0.045 0.050 |0.052 0.051
JISE 0.044 0.066 [0.049 0.05 |0.045 0.066 0.05 0.051
RE 1 2.2 125 1.29 1 215 1.25 1.30

95% Cov 0.95

35% missing

0.869 0.953 |0.963 0.946 0.869 0.956 0.963

E(Bias) 0.002 -0.061 10.011 |0.012 0.003 -0.061 0.012 0.012
E(SE) 0.045 0.056 |[0.056 0.056 |0.045 0.056 0.057 0.057
JIISE 0.044 10.081 |0.055 0.056 |0.045 0.081 0.056 0.057
RE 1 34 1.56 1.64 1 332 [1.59 1.66
95% Cov 0.953 10.826 [0.948 0.966 |0.951 0.826 |0.952 0.961
50% missing

E(Bias) 0 -0.081 |0.021 10.021 0 -0.081 0.022 0.022
E(SE) 0.045 0.063 |0.063 0.064 |0.045 0.063 0.065 0.064
JIISE 0.044 |0.104 |0.067 0.069 |0.045 0.104 |0.068 0.071
RE 1 5,51 (231 |245 1 5.4 2.35 25

95% Cov 0.952 |0.748 |0.926 0.947 |0.952 0.746 0.931 0.944

Note: full data (Full), complete case analysis (CC), the expectation-maximization
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)

Table 2: Summary statistics for coefficients from simulation study with partial
correlation of .1 and sample size of 500.

(ny.z:'34’ .55; Tables 3 and 4), the standard errors were the largest
for CC and often slightly smaller for the EM in comparison to ML
When the correlation was small (p_ =.1; Table 2) the standard errors
were similar across all methods and slightly larger for the EM and MI
approach. However, when the correlation was large (p, =.8; Table 5)
the standard errors were the same across methods, wﬁereas for EM
and MI they became smaller than CC as the percentage of missingness
increased. However for the Fisher-z approach when the correlation was
large (p,, =.8; Table 5), the standard errors tended to be the largest for
the EM and smallest for MI. The standard errors tended to increase as
the proportion of missingness increased.

In all scenarios the EM and MI had similar MSE; however, the EM
had a smaller MSE that was closer to the actual MSE. CC always had
the largest MSE. The EM was the most efficient approach, followed by
MI then CC. As the proportion of missingness increased all methods
yielded less efficient estimates. The coverages for small and moderate
correlations (p, _<.55; Tables 2 and 3) yielded coverages that were close
to the true nominal value for EM and MI and were too narrow for CC.
This implies CC will always be too liberal. As the correlation increased (
P,.. 2.55 Tables 4 and 5) the correlation approach produced coverages
that were too conservative, except when p =55 (Table 4) EM had
coverages close to the true coverage. When p =55 (Table 4) the
Fisher-z produced close to true coverages for EM and MI and was too
narrow for CC. However, when the correlation was large (p, =.8, Table
5) the Fisher-z produced coverages that were slightly too narrow for
MI and too wide for EM. The findings for the correlation coverages as
the correlation increases are not surprising considering the sampling
distribution becomes skewed as the correlation is further away from 0
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(Pyopop,.)=(35.1.15),p, . =347, =36,n=500
Pearson correlation Fisher-z
Full CC EM Mi Full CC EM Mi

20% missing

E(Bias) 0.001 |-0.058 |0.001 |0.001 |0.002 |-0.064 0.001 |0.002
E(SE) 0.042 10.048 |0.043 |0.047 |0.045 0.050 0.048 0.049
JMSE 0.04 0.074 |0.044 |0.044 10.045 |0.081 0.05 |0.05
RE 1 3.49 124 1.26 1 3.26 (1.24 1.26
95% Cov 0.96 0.809 10.933 0.963 10.952 0.768 0.938 0.954
35% missing

E(Bias) 0.002 -0.08 0.004 0.005 |0.002 -0.087 0.005 0.006
E(SE) 0.042 0.054 0.047 0.051 0.045 0.056 0.053 0.053
VSE 0.041 0.095 0.049 0.05 0.046 0.103 0.056 0.057
RE 1 5.45 145 1.51 1 502 146 [1.52
95% Cov 0.954 0.716 10.928 0.958 0.942 0.679 0.931 0.947
50% missing

E(Bias) 0 -0.097 |0.011 |0.013 |0.001 |-0.105 0.014 0.015
E(SE) 0.042 10.061 |0.052 |0.056 |0.045 0.063 0.06 |0.058
JMSE 0.041 10.113 |0.055 |0.056 |0.046 0.123 0.063 |0.064
RE 1 7.74 1.83 [1.89 1 7.07 189 1.95
95% Cov 0.96 0.651 |0.927 0.96 0.949 0.621 |0.935 0.941

Note: full data (Full), complete case analysis (CC), the expectation-maximization
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)

Table 3: Summary statistics for coefficients from simulation study with partial cor-
relation of .34 and sample size of 500.

[24]. However, with the Fisher-z transformation this skewness is greatly
reduced. The very conservative coverages are reflecting this finding. It
has been recommended by others [9-11,24] to use the Fisher-z with
larger correlation values as we have shown.

We also considered various sample sizes (in supplement). Across
all sample sizes, the CC approach was biased and both the EM and MI
approaches had no bias or minimal bias. As the sample size increased,
the standard error and MSE decreased and the CC estimates were
less efficient and resulted in narrower coverages across all correlation
values. We also examined the sum of scores squared approach to
estimate the variance for all other methods (Full, CC, and MI) with the
Pearson correlation. Based on this variance estimate, we found that the
coverages were close to the true coverage with an occasional slightly
narrower coverage for small to moderate correlations (px .z:.l,.34,.55)
and too wide for large correlations (pmz.S) (results not shown).

The CC method had the worst properties and is not recommended.
EM and MI performed very similarly although the EM had a slightly
smaller MSE and was slightly more efficient. When the correlation was
large the EM produced more conservative coverages and MI was more
liberal. We recommend the EM and if programming is a barrier then
recommend MI. When the correlation is greater than .5 we recommend
using the Fisher-z transformation since the coverages are closer to the
nominal value.

Example

The Adult Children’s Study is conducted at the Washington
University Knight Alzheimer’s Disease Research Center. The sample
consists of cognitively normal subjects who all have a Clinical Dementia

Rating of 0 at baseline [25]. There was a decent amount of missing data
among the imaging variables. Various imaging modalities are used to
evaluate neurodegenerative diseases and are an important element of
research to study Alzheimer’s disease.

Magnetic resonance imaging has been a traditional marker to
measure volumes, where whole brain and hippocampus are commonly
utilized to track structural changes of the brain. Diffusion tensor
imaging (DTI) is a newer structural imaging measure in Alzheimer’s
disease. DTT is a magnetic resonance imaging technique that measures
water movement in the brain and can provide information about
the structure of the white matter of the brain. DTI is represented
in multiple measurements. Here we demonstrate radial diffusivity
(RD) and fractional anisotropy (FA) from the corpus callosum genu
region. Amyloid deposition is measured by Pittsburgh Compound B
(PIB) positron emission tomography and the value is represented as
the mean cortical binding potential. Although we are interested in
studying a cognitively normal group their cerebrospinal fluid amyloid
beta peptide 42 (CSF AB42) can vary and can be a confounder. CSF
AB42 is a cerebral spinal fluid biomarker that is used in Alzheimer’s
disease research to distinguish those who have early-stage Alzheimer’s
disease. Since PIB and DTI are newer modalities we are interested in
determining how they are related to whole brain volume. Therefore,
we will correlate whole brain volume with two DTI measures and PIB
while adjusting for CSF AB42 to remove the effects of CSF AB42.

The Adult Children’s Study consists of 186 participants with a
baseline measurement. Table 6 includes demographics of the Adult
Children’s Study participants. Of these 186 subjects, 36 (19%) are
missing CSF AB42, 32 (17%) are missing whole brain volume, 34 (18%)

(Pyporp.)=(64.5.4).p, =557, =63n=500
Pearson correlation Fisher-z
Full CcC EM MI Full cC EM Mi

20% missing

E(Bias) -0.002 -0.041 -0.005 -0.004 -0.002 -0.057 |-0.005 -0.005
E(SE) 0.037 |0.043 0.035 0.041 10.045 0.050 |0.051 0.048
JMSE 0.033 |0.056 0.036 0.036 0.047 0.077 |0.051 0.052
RE 1 2.91 119  1.21 1 263 118 [1.20
95% Cov 0.976 0.89 0.939 0.983 10.933 0.789 0.942 0.935
35% missing

E(Bias) -0.001 |-0.062 -0.009 -0.008 -0.001 -0.084 |-0.012 -0.011
E(SE) 0.037 0.048 0.039 |0.044 0.045 0.056 |0.055 0.051
VSE 0.032 0.075 0.04 0.04 0.046 0.101 |0.057 0.057
RE 1 5.49 155 157 1 479 151 15
95% Cov 0.976 0.802 0.941 |0.976 0.947 0.66 |0.94 0.941
50% missing

E(Bias) -0.002 -0.077 |-0.013 |-0.012 -0.002 -0.104 |-0.017 -0.016
E(SE) 0.037 |0.056 0.043 |0.049 10.045 0.064 |0.062 0.055
JMISE 0.032 |0.092 0.046 0.047 10.045 0.122 |0.064 0.066
RE 1 8.41 21 217 1 7.2 2.0 2.07
95% Cov 0.979 0.756 0.939 0.978 0.954 0.637 [0.934 0.931

Note: full data (Full), complete case analysis (CC), the expectation-maximization
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)

Table 4: Summary statistics for coefficients from simulation study with partial
correlation of .55 and sample size of 500.

J Biom Biostat
ISSN:2155-6180 JBMBS, an open access journal

Volume 3 « Issue 8 « 1000155



Citation: D’Angelo GM, Luo J, Xiong C (2012) Missing Data Methods for Partial Correlations. J Biom Biostat 3:155. doi:10.4172/2155-6180.1000155

Page 6 of 7

(Pyporp,.)=(9.83.7).p,. =87, =1.1n=500
Pearson correlation Fisher-z
Full cC EM MI Full cC EM MI

20% missing

E(Bias) 0 -0.013 |-0.002 |-0.002 0.002 |-0.032 -0.004 -0.004

E(SE) 0.027 |0.031 0.032 10.029 |0.045 |0.050 |0.089 0.046
JMSE 0.017 |0.023 0.019 0.019 |0.047 |0.061 |0.052 0.052

RE 1 1.94 1.27 128 1 1.70 123 1.25

95% Cov  |0.997 [0.991 0.998 0.998 0.941 0.89 0.999 0.915
35% missing

E(Bias) 0 -0.019 |-0.004 |-0.004 0.002 |-0.048 -0.01 -0.008

E(SE) 0.027 0.035 0.034 0.030 |0.045 |0.056 |0.092 0.048
JIISE 0.016 0.028 0.02 0.02 0.045 0.072 |0.055 0.055

RE 1 3.0 1.54 157 1 2.55 146 1.50

95% Cov  |0.999 [0.995 |0.999 0.998 0.948 0.858 |1 0.911
50% missing

E(Bias) 0 -0.026 |-0.01 |-0.009 0.002 |-0.065 |-0.024 -0.021

E(SE) 0.027 0.040 0.036 |0.033 0.045 0.064 0.097 0.051
N 0.016 |0.037 0.025 0.025 |0.046 |0.092 |0.067 0.067

RE 1 4932 2.36 234 1 3.97 2.09 |2.09

95% Cov  |0.999 0.984 0.997 10.995 0.955 |0.821 |0.997 0.886

Note: full data (Full), complete case analysis (CC), the expectation-maximization
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)

Table 5: Summary statistics for coefficients from simulation study with partial
correlation of .8 and sample size of 500.

N Mean (SD)
Age 186 62.0 (9.5)
CSF AB42 150 636.2 (215.9)
Education 171 16.0 (2.6)
Mini-mental state examination (MMSE) 171 29.3 (1)
Whole brain volume 154 0.80 (0.02)
Pittsburgh Compound B (PIB) 152 0.06 (0.16)
FA corpus callosum genu region 165 0.84 (0.09)
RD corpus callosum genu region 165 0.24 (0.15)

Note: cerebrospinal fluid amyloid beta peptide 42 (AB42), fractional anisotropy
(FA), and radial diffusivity (RD)

Table 6: Demographics of Adult Children’s Study.

are missing PIB, and 21 (11%) are missing FA corpus callosum genu
region and RD corpus callosum genu region. For the corpus callosum
genu regional analyses, 63 (34%) are missing at least 1 biomarker and 1
(1%) are missing all 3 biomarkers. With the PIB analysis, 54 (29%) are
missing at least 1 biomarker and 18 (10%) are missing all 3 biomarkers.
Our methods require data to be normally distributed. Whole brain
volume, the RD corpus callosum genu region, and PIB were not normally
distributed so we transformed each to be approximately normal. It was
necessary to take: the cubic transformation of whole brain volume, the
square root transformation of the RD corpus callosum genu region, and
the log transformation of PIB.

Results for the partial correlations adjusted for CSF AB42 are
reported in Table 7 of whole brain volume and the RD corpus callosum
genu region, whole brain volume and the FA corpus callosum genu
region, and whole brain volume and PIB. Overall, the coeflicient values

were similar for the expectation-maximization algorithm (EM) and
multiple imputation (MI) and differed from complete case analysis
(CC). The magnitude of EM and MI was larger than CC for all analyses.
This indicates that the correlation between whole brain volume and the
corpus callosum genu region and between whole brain volume and PIB
would appear larger if we used EM and MI. The EM standard error
was the smallest except for whole brain volume and the FA corpus
callosum genu region where it was the largest. These differences in
magnitude and standard errors affect inference and it differed across
methods. Correlation between whole brain volume and the RD corpus
callosum genu region was statistically significant using the EM and
MI approach and borderline with the CC approach. This is due to an
increase in the correlation and decrease in standard error for both EM
and MI. Also, the correlation between whole brain volume and the
FA corpus callosum genu region was statistically significant using the
MI approach, borderline with the EM approach, and not statistically
significant with the CC approach. Once again, this is due to an increase
in the correlation in EM and MI and decrease in standard error for
MI. Inference did not differ across methods for the correlation between
whole brain volume and PIB where the correlation was not statistically
significant. This is due to such a small correlation between these
imaging modalities.

In general, we found the correlation values using CC to probably be
misleading. The inference differed across methods. Also, the standard
errors tended to be smaller with the EM and MI approaches than with
the CC approach. Based on these findings we suggest using the EM
since the results were similar to what was found with the simulation
studies. If programming is a barrier we recommend using MI.

Discussion

In preliminary studies it is necessary to establish correlations
between variables of interest. Partial correlations are often used when
there is a need to adjust for other variates. Quite frequently, variables are
partially missing, and complete case methods can provide misleading
results. We have demonstrated the need for methods to handle missing
data when calculating partial correlations.

We extended the expectation-maximization (EM) algorithm for
the partial correlation and compared it to multiple imputation and
complete case analysis when all variables are missing at random. Both

Pearson correlation Fisher-z

All adjusted for AB42 cC EM Ml cC EM MI
WBYV and RD Genu (n) 123 186 185 123 186 185
Coef -0.162 |-0.239 |-0.261 -0.164 -0.243 -0.279
SE 0.090 |0.076 |0.083 |0.092 0.080 0.085
p-value 0.074 |0.002 |0.007 0.074 |0.002 0.006
WBV and FA Genu (n) 123 186 185 123 186 185
Coef 0.131 |0.170 |0.202 0.132 |0.172 0.184
SE 0.090 |0.098 0.088 0.092 |0.101 0.084
p-value 0.15 0.085 [0.039 0.15 0.09 0.046
WBYV and PIB (n) 132 186 168 132 186 168
Coef 0.022 |0.028 |0.040 |0.022 0.028 0.047
SE 0.088 |0.083 |0.083 0.088 |0.074 0.083
p-value 0.80 0.74 |0.63 0.80 0.74 0.57

Note: full data (Full), complete case analysis (CC), the expectation-maximization
algorithm (EM), multiple imputation (MI), cerebrospinal fluid amyloid beta peptide
42 (AB42), whole brain volume (WBYV), corpus callosum genu region (Genu),radial
diffusivity (RD), fractional anisotropy (FA), and Pittsburgh Compound B (PIB)

Table 7: Correlations of whole brain volume and other imaging data adjusted for
CSF AB42.
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the Pearson correlation coefficient and Fisher-z transformation were
considered for all approaches. We have demonstrated that complete
case analysis has poor performance and should not be used. We showed
that of all methods the EM had the best statistical properties. Multiple
imputation performed almost as well as EM. Multiple imputation is
recommended when there is a limitation with statistical programming.
There can be a computational cost with the EM which could be a
consideration when selecting a missing data method. For example,
multiple imputation took about 7 seconds and the EM took around 36
seconds for our example data.

In this manuscript we considered the partial Pearson correlation
coeflicient adjusting for a single covariate, as this is a common request
in the clinical world. A limitation of this manuscript is that we targeted
normally distributed data for our methods and made an assumption
that our data comes from a trivariate normal distribution. Our
methodology depends on the data coming from a trivariate normal
distribution since the Pearson correlation is directly derived from it.
However, for data that are non-normally distributed a transformation
such as the Box-Cox or the ladder of powers [26] can be used for a
normality approximation. In addition, our method can be extended
to the Spearman correlation when the data are not normal. We
demonstrated non-normally distributed data in the real application.
Future work will involve addressing multiple covariates and categorical
data which is quite intensive and will require changing our methodology
and assumptions made.

Another limitation of this manuscript is that the second derivative
was not used to calculate the information matrix for the EM. This may
improve variance estimation of the EM. A suggestion for our future
work is to use the bootstrap to estimate the variances for the EM. The
nonparametric bootstrap method does not depend on distributional
assumptions and provides an empirical estimate of the distribution and
its variance. The disadvantage of the bootstrap is the computational
time. At this time, we are investigating parallel processing to speed up
the computational time for the bootstrap.

Based on our findings we recommend using the EM to estimate
partial correlations, and can use multiple imputation as an alternative
in the event programming is a consideration. Also, we recommend
using the Fisher-z transformation when the correlation is larger than .5.
The authors intend on developing a R package for the code; meanwhile,
code can be requested from the corresponding author.
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