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Introduction
Recent advancements have fueled biomarker and imaging marker 

data collection in medical research studies. Associations between these 
markers need to be established first prior to understanding temporal 
relationships and assessments being made about predictions. In the 
early stages of medical research, data analysis is exploratory and often 
the direction of relationships between variables is unknown. A first 
step in medical research is to identify which markers are associated 
and correlation coefficients can assist in statistical assessments of this 
endeavor. For example, in the neuropsychological area and Alzheimer’s 
disease area we often are interested in how various brain regions are 
structurally and functionally related. To provide a hint of the disease 
pathway, studying neurodegenerative diseases, particularly Alzheimer’s 
disease, am006Fng those who are cognitively normal may shed light 
on the earlier stage of the disease. Obtaining some knowledge of how 
various regions are structurally related can point us to future research 
directions.

A common measure to assess whether imaging markers are related 
is the Pearson correlation coefficient; however it is often necessary to 
adjust for other variables such as demographic and other marker data 
to remove potential confounding effects. Partial correlations can be 
utilized to correlate two variables while adjusting for other variables. 
Often times, data are partially missing. Missing data approaches have 
mainly been devoted to regression models with minimal work done 
in the correlation area. No statistical methods have been developed to 
handle missing data in a partial correlation analysis. Our objective here 
is to develop statistical methods for partial correlations with missing 
data.

Missing data is such a common scenario in medical studies. 
Standard practice for correlations and partial correlations is to analyze 
only the data where all observations are fully observed. This is known 
as complete case analysis. The mean is typically of interest and has been 
addressed through estimating the regression coefficient from regression 
[1,2] or estimating the mean from a bivariate distribution [3], typically 
where the distribution is bivariate normal and the data are continuous. 
Here, we are interested in the second order statistics not the first order 
statistic.

Some work has been done with correlation estimation and missing 

data [3,4], however no literature has been devoted to estimating the 
partial correlation with missing data. Minami and Shimizu [5] have 
proposed a maximum likelihood estimate and restricted maximum 
likelihood estimate for a correlation coefficient in a bivariate normal 
distribution. He and Nagaraja [6] proposed using estimation based 
on the concomitants of order statistics from the bivariate normal 
distribution. Their problem was specifically for a continuous variable 
and rank-based variable. In a related area, Truxillo [7] examined 
maximum likelihood estimation and multiple imputation to estimate 
the mean and covariance parameters where there is missing data.

In the presence of missing data, complete case analysis can lead to 
biased and inefficient results [1]. An Alzheimer’s disease data set with 
missing imaging markers motivated us to extend the partial correlation 
coefficient using maximum likelihood estimation. We compare the 
expectation-maximization (EM) algorithm to complete case analysis 
and multiple imputation. We will limit our method to data that are 
missing at random where the missing data pattern is permitted to be 
nonmonotonic. Properties from these missing data methods will be 
compared with simulation studies. These missing data methods will be 
demonstrated using volumetric, diffusion tensor imaging (DTI), and 
Pittsburgh Compound-B (PIB) data from the Adult Children’s Study 
conducted at the Washington University Knight Alzheimer’s Disease 
Research Center.

Methods
Notation and methodology

We define our data to be three continuous variables (X, Y, Z) where 
we are interested in correlating X and Y adjusting for Z. Index i=1,..,n 
indicates the ith subject where there are n subjects. We assume that 
V=(X, Y, Z) has a multivariate normal distribution, i.e. V∼MVN(μ,Σ).
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The partial correlations of x and y adjusting for z can be estimated by   
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where the correlation between two variables x and y is
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Since our data are multivariate normal the maximum likelihood 

estimate (MLE) of the mean is 
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assume the data are missing at random where the missingness depends 
on the data that are observed and not on the data that are missing. The 
missing indicator for x is r1, for y is r2 and for z is r3, where rd=1 indicates 
not missing and rd=0 indicates missing for d=1,2,3. The missing data 
model is  1 2 3 1 2 3 2 3 3( , , | , , ) ( | , , , ) ( | , , ) ( | , )=p r r r x y z p r y z r r p r x z r p r x y .

Pearson correlation and Fisher-z

The main focus of the paper is to estimate the partial correlation. 
Two strategies are used to estimate the coefficient and its associated 
variance: 1) Pearson’s correlation [8]; and 2) Fisher-z transformation 
[9-11]. It has been shown that the Pearson correlation coefficient has an 
approximate t-distribution with (n−k−2) degrees of freedom [8] where 
k=1 is the number of variables partialled out where the standard error is 
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The second approach is using the Fisher-z. The Fisher-z 
approximation [9,10] is a common measure used for estimation and 
inference of correlations and partial correlations. RA Fisher discovered 
the correlation coefficient is not normally distributed [9,10]; and he 
suggested a function of the correlation coefficient that is approximately 
normally distributed. A property of the Fisher-z transformation is that 
its variance is a function of the sample size. When using the Fisher-z 
transformation the correlation is first transformed:
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For the Fisher-z transformation, ˆτ τ−  has an approximately normal 
distribution of N(0,1/(n-(p-q)-3)) [8], where p−q is the number of 
variables conditioned on. In this case we are only conditioning on 1 
variable and the standard error is 

  ( )1 1 3 .= − −SE n                                                      (8)

EM algorithm

Maximum likelihood estimation [1,12-14] is an approach to 
estimate parameters from the multivariate normal distribution in 
the presence of missing data. However, if the missingness pattern 
is nonmonotonic then the maximum likelihood estimate (MLE) is 
not tractable when factoring the likelihood. If the likelihood cannot 
be factored the parameter estimates will not be identifiable. An 
algorithm that can solve the MLE in general missing data problems is 
the expectation-maximization (EM) algorithm. Although the EM is 
a powerful tool to solve parameter estimates it can have convergence 
issues and can be slow.

The joint probability of V is ( ) ( ) ( ); | | ,ϕ = ϕ ϕobs mis obsp p pv v v v   and 
the log-likelihood for complete data is of the form [1] 

 ( ) ( ) ( )| | ln | ,= +obs mis obsl l pv v v vϕ ϕ ϕ                                      (9)

where φ=(µ,Σ), v=(vobs, vmis) and vobs and vmis denotes the observed and 
missing components of v. For the EM algorithm, the E-step at the kth 
iteration is [12,13] 
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When missing data occurs at the ith observation, we take a sample   
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using the Gibbs sampler [13]. For continuous data, the E-step is [12,13]. 
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The M-step of the EM uses standard weighted methods, specifically the 
weighted mean and weighted covariance here, to estimate the MLE of 
the parameters at the (k+1) iteration, φ(k+1). The information matrix is 
of the form [12,13]. 
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The EM algorithm is based on the MLE and the distribution of  ( )ˆ−ϕ ϕ  is 

asymptotically normal where the mean is 0 and variance is I-1 [1]. A 
consistent estimator of the variance is the sum of scores squared estimate, 

1
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Q Qϕ ϕ  This strategy will let us avoid further complications in 
deriving the second derivatives to estimate the variance.

To estimate the variance for the Pearson partial correlation we 
use the following details of the sum of scores squared approach and 
delta method. The delta method is used to estimate the variance of the 
Pearson’s partial correlation:
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where the partial derivatives are
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The information matrix is calculated with the second derivatives 
of the log-likelihood. However, here I is estimated by using the sum 
of scores squared. The sum of scores squared requires only the first 
derivatives of the log-likelihood. The first derivatives are 
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A similar approach is employed for the Fisher-z transformation of 
the Pearson partial correlation. We use the delta method to estimate 
the variance of the Fisher-z transformation of the Pearson partial 
correlation: 
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As previously discussed the sum of scores squared,  
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consistent estimate of the observed information and is used.

Multiple Imputation

Multiple imputation (MI) [17-21] is a popular missing data 
technique because it is included in many statistical packages. Essentially, 
multiple imputation is an approach that replaces the missing data with 
multiple simulated values. As the concept has been evolving since the 
1970s, a number of researchers have shown the usefulness of multiple 
imputation and proven that statistical properties are improved in many 
settings [17-20]. The approach we consider is an imputation method 
developed by King et al. [17] that imputes the missing data with a 
bootstrapped expectation maximization sampling algorithm rather 

than using the more traditional Markov-chain Monte Carlo-based 
imputation-posterior (IP) approach. The Amelia II library [17] was 
selected for the imputation schemes since it is faster than other existing 
software based on IP and leads to similar results. A disadvantage of 
imputation occurs when the imputation model is misspecified, resulting 
in estimates that will be biased and inefficient [22,23].

The basic idea of imputation is the missing variables are modeled 
jointly conditional on the fully observed data to provide a joint 
conditional probability for the posterior distribution. When a subject 
has only one variable missing only that missing value is filled in. When 
all 3 variables are missing none of the values for that subject is imputed.

The principal idea is to create M data sets of repeated imputations, 
m=1,..,M. We will refer to both the Pearson partial correlation and the 
Fisher-z transformation as coefficients. Based on these M imputed 
data sets, the coefficient estimates and their variances will be estimated 
for each data set: ( )*1 *

ˆ ˆ,..., MH H  and  ( )*1 *,..., MU U . The Pearson partial 
correlation calculated with equation (4) and its variance calculated 
with equation (6) are estimated for each completed data set. The 
Fisher-z transformation calculated with equation (7) and its variance 
calculated with equation (8) are estimated for each completed data set. 
Upon obtaining these M coefficient estimates and their variances, the 
equations listed directly below are used for the multiple imputation 
estimates of the coefficient and its variance. The average of the M 
coefficient estimates is [1,18] 
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The average of the M variances is [1,18] 
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The between-variance is [1,18] 
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The total variance of the coefficients is [1,18] 
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Inference for multiple imputation is based on a t-test with v degrees 

of freedom where the t-statistic M
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[1,18].

Simulation Study

We performed simulation studies to determine the finite sample 
properties of the various methods. The methods compared here 
are analysis on the full data (Full), complete case analysis (CC), the 
expectation-maximization algorithm (EM) and multiple imputation 
(MI). The full data is the generated data before deletion of missing 
values. First we estimated the Pearson partial correlation and its 
variance. Then we estimated the Fisher-z transformation and its 
variance. For simulation studies, we compared the mean of bias (bias), 
mean of the standard error (SE), square root of the mean squared error 
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% 
Cov). Since all methods are not unbiased we used the MSE to calculate 
the relative efficiency where the MSE of each missing data method is 
compared to the MSE without missing data (Full). Each simulation 
study has 1000 replications.
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(ρxy.z=.34, .55; Tables 3 and 4), the standard errors were the largest 
for CC and often slightly smaller for the EM in comparison to MI. 
When the correlation was small (ρxy.z=.1; Table 2) the standard errors 
were similar across all methods and slightly larger for the EM and MI 
approach. However, when the correlation was large (ρxy.z=.8; Table 5) 
the standard errors were the same across methods, whereas for EM 
and MI they became smaller than CC as the percentage of missingness 
increased. However for the Fisher-z approach when the correlation was 
large (ρxy.z=.8; Table 5), the standard errors tended to be the largest for 
the EM and smallest for MI. The standard errors tended to increase as 
the proportion of missingness increased.

In all scenarios the EM and MI had similar MSE; however, the EM 
had a smaller MSE that was closer to the actual MSE. CC always had 
the largest MSE. The EM was the most efficient approach, followed by 
MI then CC. As the proportion of missingness increased all methods 
yielded less efficient estimates. The coverages for small and moderate 
correlations (ρxy.z <.55; Tables 2 and 3) yielded coverages that were close 
to the true nominal value for EM and MI and were too narrow for CC. 
This implies CC will always be too liberal. As the correlation increased (

. .55ρ ≥xy z   Tables 4 and 5) the correlation approach produced coverages 
that were too conservative, except when ρxy.z=.55 (Table 4) EM had 
coverages close to the true coverage. When ρxy.z=.55 (Table 4) the 
Fisher-z produced close to true coverages for EM and MI and was too 
narrow for CC. However, when the correlation was large (ρxy.z=.8, Table 
5) the Fisher-z produced coverages that were slightly too narrow for 
MI and too wide for EM. The findings for the correlation coverages as 
the correlation increases are not surprising considering the sampling 
distribution becomes skewed as the correlation is further away from 0 

We generated 3 variables to have a multivariate normal distribution, 
where V∼MVN(0,Σ), all the variances are 1 and the correlations, 
partial correlations, and Fisher-z transformation,(ρxy, ρxz, ρyz, ρxy.z, τxy.z) 
considered are: (.105, .03, .21, .1,.1), (.35, .1, .15, .34,.36), (.64, .5, .4, 
.55,.63), (.9, .83, .7, .8,1.1). We considered samples sizes of 50 (results 
in Supplementary Material Section), 200 (results in Supplementary 
Material Section), 500 and 1000 (results in Supplementary Material 
Section) and percentage of missingness of 20%, 35%, and 50%. The 
type of missing data mechanism is missing at random, where the 
missingness depends on the observed portion of the data and not on 
the unobserved portion of the data.

The missing data model we used to generate the missing data was    
1 2 3 1 2 3 2 3 3( , , | , , ) ( | , , , ) ( | , , ) ( | , )=p r r r x y z p r y z r r p r x z r p r x y where r1 is the 

missing indicator for x, r2 is the missing indicator for y, and r3 is the 
missing indicator for z.The missing at random mechanism is specified by the 
models:  ( )1 2 3logit ( | , , , )p r y z r r = 0, 1 2, 3, 2 4, 31 1 1 1 1

,β β β β β+ + + +r r r r ry z r r  
( )2 3logit ( | , , )p r x z r = 0, 1 2, 3, 32 2 2 2

β β β β+ + +r r r rx z r , and  ( )3logit ( | , )p r x y
= 0, 1 2,3 3 3

β β β+ +r r rx y . In these missing data models, all the regression 
coefficients except for the intercepts were fixed to be 1. Refer to Table 
1 for the intercept values of the missing data models for each partial 
correlation.

Results for n=500 are reported in Tables 2-5, where Table 2 contains 
results for ρxy.z=.1, Table 3 contains results for ρxy.z=.34, Table 4 contains 
results for ρxy.z=.55, and Table 5 contains results for ρxy.z=.8. Regardless 
of the amount of missing data and coefficient type, MI and EM both 
had no bias or very small bias, whereas the CC approach was biased. 
As the proportion of missingness increased so did the bias. As the 
correlation increased the Fisher-z had slightly more bias than the 
Pearson correlation approach. When the correlations were moderate 

( ). ., , , ,ρ ρ ρ ρ τxy xz yz xy z xy z

Intercept values

 (.105, .03, .21, .1,.1)
   20% missing

 ( )0, 0, 0,1 2 3
3.1, 2.4, 1.4β β β= = =r r r

   35% missing
 ( )0, 0, 0,1 2 3

2.0, 1.6, 0.6β β β= = =r r r

   50% missing
 ( )0, 0, 0,1 2 3

1.5, 0.5, 0β β β= = =r r r

 (.35, .1, .15, .34,.36)
   20% missing

 ( )0, 0, 0,1 2 3
3.2, 2.4, 1.3β β β= = =r r r

   35% missing
 ( )0, 0, 0,1 2 3

2.0, 1.7, 0.6β β β= = =r r r

   50% missing
 ( )0, 0, 0,1 2 3

1.4, 0.6, 0β β β= = =r r r

 (.64, .5, .4, .55,.63),
   20% missing

 ( )0, 0, 0,1 2 3
3.3, 2.5, 1.5β β β= = =r r r

   35% missing
 ( )0, 0, 0,1 2 3

2.0, 1.7, 0.6β β β= = =r r r

   50% missing
 ( )0, 0, 0,1 2 3

1.3, 0.5, 0β β β= = =r r r

 (.9, .83, .7, .8,1.1)
   20% missing

 ( )0, 0, 0,1 2 3
3.4, 2.4, 1.6β β β= = =r r r

   35% missing
 ( )0, 0, 0,1 2 3

2.0, 1.7, 0.6β β β= = =r r r

   50% missing
 ( )0, 0, 0,1 2 3

1.2, 0.4, 0β β β= = =r r r

Table 1:  Intercept values for the missing data models from simulation studies

( ) ( ) . ., , .105,.03,.21 , .1, .1, 500ρ ρ ρ ρ τ= = = =xy xz yz xy z xy z n

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

  E(Bias) -0.001 -0.044 0.002 0.003 -0.001 -0.044 0.003 0.003

  E(SE) 0.045 0.05 0.051 0.051 0.045 0.050 0.052 0.051

MSE 0.044 0.066 0.049 0.05 0.045 0.066 0.05 0.051

  RE 1 2.2 1.25 1.29 1 2.15 1.25 1.30

  95% Cov 0.95 0.869 0.953 0.963 0.946 0.869 0.956 0.963

35% missing

  E(Bias)  0.002 -0.061 0.011 0.012 0.003 -0.061 0.012 0.012

  E(SE) 0.045 0.056 0.056 0.056 0.045 0.056 0.057 0.057

MSE 0.044 0.081 0.055 0.056 0.045 0.081 0.056 0.057

  RE 1 3.4 1.56 1.64 1 3.32 1.59 1.66

  95% Cov 0.953 0.826 0.948 0.966 0.951 0.826 0.952 0.961

50% missing

  E(Bias) 0 -0.081 0.021 0.021 0 -0.081 0.022 0.022

  E(SE) 0.045 0.063 0.063 0.064 0.045 0.063 0.065 0.064

MSE 0.044 0.104 0.067 0.069 0.045 0.104 0.068 0.071

  RE 1 5.51 2.31 2.45 1 5.4 2.35 2.5

  95% Cov 0.952 0.748 0.926 0.947 0.952 0.746 0.931 0.944

Note: full data (Full), complete case analysis (CC), the expectation-maximization 
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error 
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov) 
Table 2:  Summary statistics for coefficients from simulation study with partial 
correlation of .1 and sample size of 500.
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[24]. However, with the Fisher-z transformation this skewness is greatly 
reduced. The very conservative coverages are reflecting this finding. It 
has been recommended by others [9-11,24] to use the Fisher-z with 
larger correlation values as we have shown.

We also considered various sample sizes (in supplement). Across 
all sample sizes, the CC approach was biased and both the EM and MI 
approaches had no bias or minimal bias. As the sample size increased, 
the standard error and MSE decreased and the CC estimates were 
less efficient and resulted in narrower coverages across all correlation 
values. We also examined the sum of scores squared approach to 
estimate the variance for all other methods (Full, CC, and MI) with the 
Pearson correlation. Based on this variance estimate, we found that the 
coverages were close to the true coverage with an occasional slightly 
narrower coverage for small to moderate correlations (ρxy.z=.1,.34,.55) 
and too wide for large correlations (ρxy.z=.8) (results not shown).

The CC method had the worst properties and is not recommended. 
EM and MI performed very similarly although the EM had a slightly 
smaller MSE and was slightly more efficient. When the correlation was 
large the EM produced more conservative coverages and MI was more 
liberal. We recommend the EM and if programming is a barrier then 
recommend MI. When the correlation is greater than .5 we recommend 
using the Fisher-z transformation since the coverages are closer to the 
nominal value.

Example
The Adult Children’s Study is conducted at the Washington 

University Knight Alzheimer’s Disease Research Center. The sample 
consists of cognitively normal subjects who all have a Clinical Dementia 

Rating of 0 at baseline [25]. There was a decent amount of missing data 
among the imaging variables. Various imaging modalities are used to 
evaluate neurodegenerative diseases and are an important element of 
research to study Alzheimer’s disease.

Magnetic resonance imaging has been a traditional marker to 
measure volumes, where whole brain and hippocampus are commonly 
utilized to track structural changes of the brain. Diffusion tensor 
imaging (DTI) is a newer structural imaging measure in Alzheimer’s 
disease. DTI is a magnetic resonance imaging technique that measures 
water movement in the brain and can provide information about 
the structure of the white matter of the brain. DTI is represented 
in multiple measurements. Here we demonstrate radial diffusivity 
(RD) and fractional anisotropy (FA) from the corpus callosum genu 
region. Amyloid deposition is measured by Pittsburgh Compound B 
(PIB) positron emission tomography and the value is represented as 
the mean cortical binding potential. Although we are interested in 
studying a cognitively normal group their cerebrospinal fluid amyloid 
beta peptide 42 (CSF AB42) can vary and can be a confounder. CSF 
AB42 is a cerebral spinal fluid biomarker that is used in Alzheimer’s 
disease research to distinguish those who have early-stage Alzheimer’s 
disease. Since PIB and DTI are newer modalities we are interested in 
determining how they are related to whole brain volume. Therefore, 
we will correlate whole brain volume with two DTI measures and PIB 
while adjusting for CSF AB42 to remove the effects of CSF AB42.

The Adult Children’s Study consists of 186 participants with a 
baseline measurement. Table 6 includes demographics of the Adult 
Children’s Study participants. Of these 186 subjects, 36 (19%) are 
missing CSF AB42, 32 (17%) are missing whole brain volume, 34 (18%) 

( ) ( ) . ., , .35,.1,.15 , .34, .36, 500ρ ρ ρ ρ τ= = = =xy xz yz xy z xy z n

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

  E(Bias) 0.001 -0.058 0.001 0.001 0.002 -0.064 0.001 0.002

  E(SE) 0.042 0.048 0.043 0.047 0.045 0.050 0.048 0.049

MSE 0.04 0.074 0.044 0.044 0.045 0.081 0.05 0.05

  RE 1 3.49 1.24 1.26 1 3.26 1.24 1.26

  95% Cov 0.96 0.809 0.933 0.963 0.952 0.768 0.938 0.954

35% missing

  E(Bias) 0.002 -0.08 0.004 0.005 0.002 -0.087 0.005 0.006

  E(SE) 0.042 0.054 0.047 0.051 0.045 0.056 0.053 0.053

MSE 0.041 0.095 0.049 0.05 0.046 0.103 0.056 0.057

  RE 1 5.45 1.45 1.51 1 5.02 1.46 1.52

  95% Cov 0.954 0.716 0.928 0.958 0.942 0.679 0.931 0.947

50% missing

  E(Bias) 0 -0.097 0.011 0.013 0.001 -0.105 0.014 0.015

  E(SE) 0.042 0.061 0.052 0.056 0.045 0.063 0.06 0.058

MSE 0.041 0.113 0.055 0.056 0.046 0.123 0.063 0.064

  RE 1 7.74 1.83 1.89 1 7.07 1.89 1.95

  95% Cov 0.96 0.651 0.927 0.96 0.949 0.621 0.935 0.941

Note: full data (Full), complete case analysis (CC), the expectation-maximization 
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error 
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov) 
Table 3:  Summary statistics for coefficients from simulation study with partial cor-
relation of .34 and sample size of 500. ( ) ( ) . ., , .64,.5,.4 , .55, .63, 500ρ ρ ρ ρ τ= = = =xy xz yz xy z xy z n

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

  E(Bias) -0.002 -0.041 -0.005 -0.004 -0.002 -0.057 -0.005 -0.005

  E(SE) 0.037 0.043 0.035 0.041 0.045 0.050 0.051 0.048

MSE 0.033 0.056 0.036 0.036 0.047 0.077 0.051 0.052

  RE 1 2.91 1.19 1.21 1 2.63 1.18 1.20

  95% Cov 0.976 0.89 0.939 0.983 0.933 0.789 0.942 0.935

35% missing

  E(Bias) -0.001 -0.062 -0.009 -0.008 -0.001 -0.084 -0.012 -0.011

  E(SE) 0.037 0.048 0.039 0.044 0.045 0.056 0.055 0.051

MSE 0.032 0.075 0.04 0.04 0.046 0.101 0.057 0.057

  RE 1 5.49 1.55 1.57 1 4.79 1.51 1.5

  95% Cov 0.976 0.802 0.941 0.976 0.947 0.66 0.94 0.941

50% missing

  E(Bias) -0.002 -0.077 -0.013 -0.012 -0.002 -0.104 -0.017 -0.016

  E(SE) 0.037 0.056 0.043 0.049 0.045 0.064 0.062 0.055

MSE 0.032 0.092 0.046 0.047 0.045 0.122 0.064 0.066

  RE 1 8.41 2.1 2.17 1 7.2 2.0 2.07

  95% Cov 0.979 0.756 0.939 0.978 0.954 0.637 0.934 0.931

Note: full data (Full), complete case analysis (CC), the expectation-maximization 
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error 
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov) 
Table 4:  Summary statistics for coefficients from simulation study with partial 
correlation of .55 and sample size of 500.
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are missing PIB, and 21 (11%) are missing FA corpus callosum genu 
region and RD corpus callosum genu region. For the corpus callosum 
genu regional analyses, 63 (34%) are missing at least 1 biomarker and 1 
(1%) are missing all 3 biomarkers. With the PIB analysis, 54 (29%) are 
missing at least 1 biomarker and 18 (10%) are missing all 3 biomarkers. 
Our methods require data to be normally distributed. Whole brain 
volume, the RD corpus callosum genu region, and PIB were not normally 
distributed so we transformed each to be approximately normal. It was 
necessary to take: the cubic transformation of whole brain volume, the 
square root transformation of the RD corpus callosum genu region, and 
the log transformation of PIB.

Results for the partial correlations adjusted for CSF AB42 are 
reported in Table 7 of whole brain volume and the RD corpus callosum 
genu region, whole brain volume and the FA corpus callosum genu 
region, and whole brain volume and PIB. Overall, the coefficient values 

were similar for the expectation-maximization algorithm (EM) and 
multiple imputation (MI) and differed from complete case analysis 
(CC). The magnitude of EM and MI was larger than CC for all analyses. 
This indicates that the correlation between whole brain volume and the 
corpus callosum genu region and between whole brain volume and PIB 
would appear larger if we used EM and MI. The EM standard error 
was the smallest except for whole brain volume and the FA corpus 
callosum genu region where it was the largest. These differences in 
magnitude and standard errors affect inference and it differed across 
methods. Correlation between whole brain volume and the RD corpus 
callosum genu region was statistically significant using the EM and 
MI approach and borderline with the CC approach. This is due to an 
increase in the correlation and decrease in standard error for both EM 
and MI. Also, the correlation between whole brain volume and the 
FA corpus callosum genu region was statistically significant using the 
MI approach, borderline with the EM approach, and not statistically 
significant with the CC approach. Once again, this is due to an increase 
in the correlation in EM and MI and decrease in standard error for 
MI. Inference did not differ across methods for the correlation between 
whole brain volume and PIB where the correlation was not statistically 
significant. This is due to such a small correlation between these 
imaging modalities.

In general, we found the correlation values using CC to probably be 
misleading. The inference differed across methods. Also, the standard 
errors tended to be smaller with the EM and MI approaches than with 
the CC approach. Based on these findings we suggest using the EM 
since the results were similar to what was found with the simulation 
studies. If programming is a barrier we recommend using MI.

Discussion
In preliminary studies it is necessary to establish correlations 

between variables of interest. Partial correlations are often used when 
there is a need to adjust for other variates. Quite frequently, variables are 
partially missing, and complete case methods can provide misleading 
results. We have demonstrated the need for methods to handle missing 
data when calculating partial correlations.

We extended the expectation-maximization (EM) algorithm for 
the partial correlation and compared it to multiple imputation and 
complete case analysis when all variables are missing at random. Both 

( ) ( ) . ., , .9,.83,.7 , .8, 1.1, 500ρ ρ ρ ρ τ= = = =xy xz yz xy z xy z n

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

  E(Bias) 0 -0.013 -0.002 -0.002 0.002 -0.032 -0.004 -0.004

  E(SE) 0.027 0.031 0.032 0.029 0.045 0.050 0.089 0.046

MSE 0.017 0.023 0.019 0.019 0.047 0.061 0.052 0.052

  RE 1 1.94 1.27 1.28 1 1.70 1.23 1.25

  95% Cov 0.997 0.991 0.998 0.998 0.941 0.89 0.999 0.915

35% missing

  E(Bias) 0 -0.019 -0.004 -0.004 0.002 -0.048 -0.01 -0.008

  E(SE) 0.027 0.035 0.034 0.030 0.045 0.056 0.092 0.048

MSE 0.016 0.028 0.02 0.02 0.045 0.072 0.055 0.055

  RE 1 3.0 1.54 1.57 1 2.55 1.46 1.50

  95% Cov 0.999 0.995 0.999 0.998 0.948 0.858 1 0.911

50% missing

  E(Bias) 0 -0.026 -0.01 -0.009 0.002 -0.065 -0.024 -0.021

  E(SE) 0.027 0.040 0.036 0.033 0.045 0.064 0.097 0.051

MSE 0.016 0.037 0.025 0.025 0.046 0.092 0.067 0.067

  RE 1 4.932 2.36 2.34 1 3.97 2.09 2.09

  95% Cov 0.999 0.984 0.997 0.995 0.955 0.821 0.997 0.886

Note: full data (Full), complete case analysis (CC), the expectation-maximization 
algorithm (EM), multiple imputation (MI), standard error (SE), mean squared error 
(MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)
Table 5: Summary statistics for coefficients from simulation study with partial 
correlation of .8 and sample size of 500.

N Mean (SD)

Age 186 62.0 (9.5)
CSF AB42 150 636.2 (215.9)
Education 171 16.0 (2.6)
Mini–mental state examination (MMSE) 171 29.3 (1)
Whole brain volume 154 0.80 (0.02)
Pittsburgh Compound B (PIB) 152 0.06 (0.16)
FA corpus callosum genu region 165 0.84 (0.09)
RD corpus callosum genu region 165 0.24 (0.15)

Note: cerebrospinal fluid amyloid beta peptide 42 (AB42), fractional anisotropy 
(FA), and radial diffusivity (RD) 

Table 6: Demographics of Adult Children’s Study.

Pearson correlation Fisher-z

All adjusted for AB42 CC EM MI CC EM MI
 WBV and RD Genu (n) 123 186 185 123 186 185
  Coef -0.162 -0.239 -0.261 -0.164 -0.243 -0.279
  SE 0.090 0.076 0.083 0.092 0.080 0.085
  p-value 0.074 0.002 0.007 0.074 0.002 0.006
 WBV and FA Genu (n) 123 186 185 123 186 185
  Coef 0.131 0.170 0.202 0.132 0.172 0.184
  SE 0.090 0.098 0.088 0.092 0.101 0.084
  p-value 0.15 0.085 0.039 0.15 0.09 0.046
  WBV and PIB (n) 132 186 168 132 186 168
  Coef 0.022 0.028 0.040 0.022 0.028 0.047
  SE 0.088 0.083 0.083 0.088 0.074 0.083
  p-value 0.80 0.74 0.63 0.80 0.74 0.57

Note: full data (Full), complete case analysis (CC), the expectation-maximization 
algorithm (EM), multiple imputation (MI), cerebrospinal fluid amyloid beta peptide 
42 (AB42), whole brain volume (WBV), corpus callosum genu region (Genu),radial 
diffusivity (RD), fractional anisotropy (FA), and Pittsburgh Compound B (PIB) 
Table 7: Correlations of whole brain volume and other imaging data adjusted for 
CSF AB42.
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the Pearson correlation coefficient and Fisher-z transformation were 
considered for all approaches. We have demonstrated that complete 
case analysis has poor performance and should not be used. We showed 
that of all methods the EM had the best statistical properties. Multiple 
imputation performed almost as well as EM. Multiple imputation is 
recommended when there is a limitation with statistical programming. 
There can be a computational cost with the EM which could be a 
consideration when selecting a missing data method. For example, 
multiple imputation took about 7 seconds and the EM took around 36 
seconds for our example data.

In this manuscript we considered the partial Pearson correlation 
coefficient adjusting for a single covariate, as this is a common request 
in the clinical world. A limitation of this manuscript is that we targeted 
normally distributed data for our methods and made an assumption 
that our data comes from a trivariate normal distribution. Our 
methodology depends on the data coming from a trivariate normal 
distribution since the Pearson correlation is directly derived from it. 
However, for data that are non-normally distributed a transformation 
such as the Box-Cox or the ladder of powers [26] can be used for a 
normality approximation. In addition, our method can be extended 
to the Spearman correlation when the data are not normal. We 
demonstrated non-normally distributed data in the real application. 
Future work will involve addressing multiple covariates and categorical 
data which is quite intensive and will require changing our methodology 
and assumptions made.

Another limitation of this manuscript is that the second derivative 
was not used to calculate the information matrix for the EM. This may 
improve variance estimation of the EM. A suggestion for our future 
work is to use the bootstrap to estimate the variances for the EM. The 
nonparametric bootstrap method does not depend on distributional 
assumptions and provides an empirical estimate of the distribution and 
its variance. The disadvantage of the bootstrap is the computational 
time. At this time, we are investigating parallel processing to speed up 
the computational time for the bootstrap. 

Based on our findings we recommend using the EM to estimate 
partial correlations, and can use multiple imputation as an alternative 
in the event programming is a consideration. Also, we recommend 
using the Fisher-z transformation when the correlation is larger than .5. 
The authors intend on developing a R package for the code; meanwhile, 
code can be requested from the corresponding author.
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