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Abstract
This paper takes a deep look at the costs related to process safety. It is not confined to the costs of trips and alarms, 

compliance with regulations and worker training, but also takes into consideration many aspects considered standard 
process design practice. Factors that affect the cost due to the hazardous nature of operation have been listed. While 
the exact cost would vary from one plant to another, this cost could, according to our thinking, amount up to one-third 
to one-half, or even more, of the capital and operating costs of the new plant handling the hazardous operations. The 
vision of the process industry globally is zero hazards and zero accidents. The costs of running the hazardous process 
mentioned in this paper would hopefully drive the industry to consider inherently safer systems, green chemistry, process 
intensification, and the like.
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Introduction
It was never an easy task to ensure safety for all the employees and 

contractors’ employees of the Company. However, with determination, 
hard work and the engagement of everyone, from top management to 
the grass root level, the company has made it possible to reduce the 
number of accidents per year. Now, there are several problems which 
still pressurize the management. An optimization can be really useful if 
the fire and other necessary anti-hazard equipment can be distributed 
cost-effectively throughout different factories in the world. There are 
lots of different equipment used to prevent accidents like quarrying, 
crushing, filtering, fire hazards, clinker piling, mixing hazards, machine 
hazards, fuel storage activities, hazardous materials etc. We were also 
delivered some data. By using the data we started formulating our 
simple linear problem [1,2]. During formulation we realize that our 
problem is actually a combination of transportation (for distribution 
of parts) and linear programming (for the minimization of total cost).

Risky decisions can be complex. People can have great difficulty 
comprehending and performing well in complex situations. Yet such 
situations are common in organized, formal markets such as insurance 
and housing and in less formal settings involving individual health 
and safety [3]. The dominant economic paradigm for risky decisions 
has been the expected utility model, a model of rational behaviour. 
Whatever its position now, criticism of it is plentiful and research 
on anomalies associated with expected utility continues [4]. Even if 
traveling fully consider all the benefits and costs of their actions and 
are well informed, a problem may arise if individuals cannot properly 
process information about risks. The individual benefit-cost approach 
is appropriate for people who can evaluate the target level of safety that 
they have chosen. People who have the ability to do so compare their 
subjective estimates of risk being experienced to their target level and 
respond to any gap between the two. The criticism of safety decisions 
that is taken most seriously is the challenge to individual competency 
[5,6].

Description of Optimization Methods Used
Linear programming

Linear programming is all about allocating scare resources among 
competitive activities. An optimization problem will be linear if and 

only if it’s all constraints function and objective function is linear. 
Linear programming problem can be of two types

1. Maximization problem

2. Minimization problem

The standard linear programming problem is given below

Minimize/Maximize Z=c1x1+ c2x2 · · ·+cnxn=∑cjxj

subject to the constraints

a11x1+a12x2+ · · ·+a1nxn ≤ b1

a21x1+a22x2+· · ·+a2nxn ≤ b2

...………………………

am1x1+am2x2+· · ·+amnxn ≤ bn

(or Ax ≤ b)

and

x1 ≥ 0, x2≥ 0, . . . , xn ≥0 (or x ≥ 0).

Here Z=c1x1+ · · ·+cnxn is the objective function, Ax ≤ b the 
functional constraint and x ≥ 0 is the non-negativity constraint.

To apply linear programming to a problem, the problem has to 
follow some assumptions. The assumptions are illustrated below:

Proportionality assumption: The contribution of each activity 
to the value of the objective function Z is proportional to the level of 
the activity xj as represented by the cjxj term in the objective function. 
Similarly, the contribution of each activity to the left-hand side of 
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each functional constraint is proportional to the level of the activity 
xj as represented by the aijxj term in the constraint. Consequently, 
this assumption rules out any exponent other than 1 for any variable 
in any term of any function (whether the objective functions or the 
function on the left-hand side of a functional constraint) in a linear 
programming model. If the exponent is greater than 1, it can be solved 
using quadratic programming (QP) and thus it becomes non-linear in 
nature. Considering these, the assumption can also be termed as direct 
proportionality assumption [7,8].

Additivity assumption: Every function in a linear programming 
model (whether the objective functions or the function on the left hand 
side of a functional constraint) is the sum of the individual contributions 
of the respective activities. It actually means the total incorporation 
of the level of activities with demand in an objective function. The 
incorporation will be done using the addition (+) operator.

Divisibility assumption: Decision variables in a linear 
programming model are allowed to have any values, including non-
integer values that satisfy the functional and non-negativity constraints. 
Thus, these variables are not restricted to just integer values. Since 
each decision variable represents the level of some activity, it is being 
assumed that the activities can be run at fractional levels. For an integer 
restriction on decision variables leads us to integer (IP) and mixed 
integer (MIP) programming.

Certainty assumption: The value assigned to each parameter 
of a linear programming model is assumed to be a known (certain) 
constant. But in real cases, it is typically violated. The values assigned 
to the different parameters generally follow a probability distribution. 
It becomes very important for sensitivity analysis and re-optimization 
of a valid model. Our problem seems quite simple at first with this 
assumption of certainty but eventually we come to know that the 
parameters (cost per unit) assigned for the objective function for 
different equipment are not valid and thus cannot be used directly in 
our solution to the linear programming model of cost minimization. 
Here comes the utilization of transportation simplex and formulation 
of a transportation (distribution) problem.

Transportation problem (Transportation simplex)

In particular, the general transportation problem is concerned 
(literally or figuratively) with distributing any commodity from any 
group of supply centers, called sources, to any group of receiving 
centers, called destinations, in such a way as to minimize the total 
distribution cost. There could be many sources and their destinations. 
We also need to remember that the distribution is not limited to a 
single product from different sources. There could be more than one 
product for distribution [9]. In such cases the problem can be defined 
to be combination of two (or more) transportation problems. For 
transportation problem, a modified simplex is used which is termed as 
transportation simplex. There are many variations in different steps to 
this special form such as:

North-west corner rule: It basically determines the direction 
of a transportation simplex tableau. This rule allows us to begin the 
distribution of item from the north-west corner point and keep going 
until all the resources are allocated.

Vogel’s approximation method: It is more concerned with 
the parametric table rather than the simplex tableau. It depends on 
the difference between smallest and next to the smallest values in 
parametric tableau for each iterative solution. Largest difference with 
smallest unit costs will be the direction for the distribution.

Russell’s approximation method: It determines the largest unit 
cost and the multiplier of the basic variables are approximated to be 
the largest negative value in the transportation simplex tableau. The tie 
in the values for this method can be broken arbitrarily.

In a transportation problem, certain assumptions are followed or 
maintained (otherwise, it must be modeled with linear programming 
with lots of constraints that would be next to impossible in some cases 
to solve). The assumptions are illustrated below:

The requirements assumption: Each source has a fixed supply of 
units, where this entire supply must be distributed to the destinations. 
Similarly, each destination has a fixed demand for units, where this 
entire demand must be received from the sources. This assumption 
that there is no leeway in the amounts to be sent or received means that 
there needs to be a balance between the total supply from all sources 
and the total demand at all destinations.

The feasible solutions property: A transportation problem will 
have feasible solutions if and only if

1 1

m n
i ji j

S d
= =

=∑ ∑ , where s=supply and d=demand for i and j 

number of sources and destinations respectively.

In some real problems, the supplies actually represent maximum 
amounts (rather than fixed amounts) to be distributed. Similarly, in 
other cases, the demands represent maxi-mum amounts (rather than 
fixed amounts) to be received. Such problems do not quite fit the model 
for a transportation problem because they violate the requirements 
assumption.

However, it is possible to re-formulate the problem so that they 
then fit this model by introducing a dummy destination or a dummy 
source to take up the slack between the actual amounts and maximum 
amounts being distributed.

The cost assumption: The cost of distributing units from any 
particular source to any particular destination is directly proportional 
to the number of units distributed. Therefore, this cost is just the unit 
cost of distribution times the number of units distributed. (We let cij 
denote this unit cost for source i and destination j.) It is more like a 
proportionality assumption in linear programming model.

The model: Any problem (whether involving transportation or 
not) fits the model for a transportation problem if it can be described 
completely in terms of a parameter table after satisfying both the 
requirements assumption and the cost assumption. The objective is to 
minimize the total cost of distributing the units from different sources 
to different destinations.

Integer solution property: For transportation problems where 
every si and dj have an integer value, it is obvious that all the basic 
variables (allocations) in every basic feasible (BF) solution (including 
an optimal one) also have integer values. The integer solution property 
is automatically satisfied when setting up the table for demand and 
supply units.

Problem Description
Lafarge Shurma Cement company is a leading company in cement 

production. It has a corporate office at Dhaka and three production 
plants located at Shreepur, Sylhet and Chittagong. They are going to 
buy some safety equipment, mainly helmets, gloves and CO2 cylinders. 
These equipment are going to be imported from three different 
countries. These goods will enter into in to the country at three different 
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points (Dhaka Airport, Chittagong Sea-port and Benapole Border) and 
from these ports they will be distributed among the production plants 
and the corporate house. Management is seeking a way of distribution 
so that they can minimize their distribution cost. The problem is 
illustrated with the following Figure 1.

The different costs associated with the transportation problem will 
be discussed in the numerical analysis of this report. The management 
wanted us to minimize their overall cost with some given constraints 
but we face a major problem in determining the optimum cost range 
for the transportation of different safety equipment. The problem 
begins with the carbon di-oxide cylinder having two different sources 
with four destinations. It was not possible for typical transportation 
simplex to solve the total problem at once for different sources of one 
single product. That is why we had to subdivide the total problem 
into a series of transportation problems for each of the equipment 
(namely helmets, CO2 cylinders and gloves) and then find the optimum 
number of equipment required for cost minimization [10-14]. With 
those values and the minimized function values, we determine the 
average optimized cost for each of the 3 equipment units transported 
to factories. Finally we used this data in the total cost function (which 
is eventually a linear function of the three cost functions from three 
equipment) to minimize it with some given constraints. The solution 
steps are illustrated below with the help of a Figure 2.

Numerical Calculation
Data sets

We were given different scattered data sets from which we became 

Benapole Border 

CO2 Cylinders and Gloves 

Chittagong Seaport 

CO2 Cylinders 

Dhaka Airport 

(Helmets) 

Chittagong 

CO2 Cylinders 

Shreepur 

CO2 Cylinders 

Sylhet 

CO2 Cylinders 

Dhaka 

CO2 Cylinders 

Figure 1: Illustration of the project problem.

Figure 2: Flow chart for the solution steps for the project problem.

able to construct the following parameter table for our analysis (Tables 
1-3) and also we were told by the management to keep the total number 
of equipment bought to be at most 10,000 pieces and no way more than 
this for cost minimization.

Numerical solutions

Software packages used: Microsoft Excel 2013 and Tora.

Microsoft Excel 15.0 Answer Report,

Worksheet: [Book1] Sheet 1,

Report Created: 19-Jun-19 7:42:53 PM,

Result: Solver found a solution. All Constraints and optimality 
conditions are satisfied. 

Solver engine

Engine: Simplex LP,

Solution Time: 0.015 Seconds.

Iterations: 10 Subproblems: 0.

Solver options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, 
Use Automatic Scaling

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer 
Tolerance 1%, Assume NonNegativ (Tables 4, 5, and Figures 3-5.
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To Dhaka Sylhet Shreepur Chittagong Supply
From

Chittagong Seaport 30,000 17,500 4,000 5,000 1,280
Benapole Border 17,000 30,000 18,000 2,500 170

Demand 320 450 300 330

Table 1: Parameter Table for CO2 Cylinders.

To Dhaka Sylhet Shreepur Chittagong Supply
Dhaka Airport 0 20,000 15,000 30,000 4000

Demand 0 1400 1430 1500

Table 2: Parameter Table for Helmets.

To Dhaka Sylhet Shreepur Chittagong Supply
Dhaka Airport 0 20,000 15,000 30,000 4000

Demand 0 1200 1000 900

Table 3: Parameter Table for Helmets.

Objective Cell (Min)
Cell Name Original Value Final Value

$J$11 DHAKA 0 18965000
Variable Cells

Cell Name Original Value Final Value Integer
$J$5 CTG DHAKA 0 0 Contin
$K$5 CTG SYLHET 0 450 Contin
$L$5 CTG SHREEPUR 0 300 Contin
$M$5 CTG CTG 0 530 Contin
$J$6 BENAPOL DHAKA 0 320 Contin
$K$6 BENAPOL SYLHET 0 0 Contin
$L$6 BENAPOL SHREEP 0 0 Contin
$M$6 BENAPOL CTG 0 0 Contin

Constraints
Cell Name Cell Value Formula Status Slack

$J$9 total DHAKA 320 $J$9>=$J$8 Binding 0
$K$9 total SYLHET 450 $K$9>=$K$8  Binding 0

$L$9  total SHREEPUR 300 $L$9>=$L$8  Binding 0
$M$9 total CTG 530 $M$9>=$M$8  Not Binding 200
$P$5 CTG total 1280 $P$5>=$O$5  Binding 0

$P$6 BENAPOL total 320 $P$6>=$O$6 Not Binding 150

Table 4: Answer sheet for CO2 Cylinders.

Variable Cells
Cell Name Final Value Reduced Cost Objective Coefficient Allowable Increase Allowable Decrease
$J$5 CTG DHAKA 0 8000 30000 1.00E+30 8000
$K$5 CTG SYLHET 450 0 17500 17500 12500
$L$5 CTG SHREEPUR 300 0 10000 13000 5000
$M$5 CTG CTG 530 0 5000 5000 5000
$J$6 BENAPOL DHAKA 320 0 17000 8000 17000
$K$6 BENAPOL SYLHET 0 17500 30000 1.00E+30 17500
$L$6 BENAPOL 

SHREEPUR
0 13000 18000 1.00E+30 13000

$M$6 BENAPOL CTG 0 25000 25000 1.00E+30 25000
Constraints

Cell Name Final Value Sadow Price Constraint R.H. Side Allowable Increase Allowable Decrease
$J$9 total DHAKA 320 17000 320 1.00E+30 150
$K$9 total SYLHET 450 12500 450 200 450
$L$9 total SHREEPUR 300 5000 300 200 300
$M$9 total CTG 530 0 330 200 1.00E+30
$P$5 CTG total 1280 5000 1280 1.00E+30 200
$P$6 BENAPOL total 320 0 170 150 1.00E+30

Table 5: Sensitivity Analysis for distributing CO2 Cylinders.
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Figure 3: Tora software optimization with Northwest Corner Rule.

Figure 4: Tora software optimization with Least Cost (Russell’s Approximation) 
Method.

Figure 5: Tora software optimization with Vogel’s Approximation Method.

For similar calculations, the steps for allocating helmets and gloves 
are skipped. We were able to create the necessary tableau with the 
following minimized average cost like the following (Table 6).

Now, the formulation for the linear programming can be stated like 
this:

Minimize Z=22000x1+13500x2+24a250x3

Subject to,

43001
14002
31003

100001 2 3

x

x

x

x x x

≥

≥

≥

+ + ≤

Where x1, x2 and x3 are the number of helmets, CO2 cylinders and 
gloves.

From iterative simplex, we find the following optimum number of 
equipment to be transported via different routes to the factories located 
at 4 places in the country. Thus the aggregated supply (=demand) will 
be described as follows:

Number of helmets=5500 pieces,

Number of CO2 cylinders=1400 pieces,

Number of gloves=3100 pieces,

And thus the optimized minimum cost will be 21, 50, 75000 taka.
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Conclusion
In this project we have done mainly transportation problem 

along with linear problem. Here we apply the problem formulation 
to a renowned factory named Lafarge Surma Cement company. Our 
findings serve as a baseline for possible development of this company. 
The company actually gives much emphasis on the safety of the 
company worker and that’s why they wanted to allocate the safety 
equipment to their different branches at minimum costs. At the time 
of solving, we found the problem a little bit complex. Going through 
our project we can see that Transportation Simplex method is efficient 
and essential model to deal with our project rather than other models. 
We used three methods for solving this problem. To make it easy we 
have used Simplex method for solving the linear problem. At the end 
of the day we actually minimize the transportation cost of those safety 
equipment and were able to provide an idea about the aggregated 
supply (=demand) for minimized cost.
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