

Minimally Invasive Spine: Tech-Enhanced Patient Care

David R. Mitchell*

Department of Neurology, University College London, London, United Kingdom

Introduction

Minimally Invasive Spine Surgery (MISS) has revolutionized spinal care, aiming to reduce muscle damage and improve recovery. This review explores the advancements in MISS, from foundational techniques to emerging technologies like robotics and navigation. It highlights how these approaches enhance precision and patient outcomes, even in complex cases. The focus is on preserving anatomy while achieving effective decompression and stabilization, suggesting a trajectory towards even less invasive and more personalized treatments[1].

Endoscopic Spine Surgery (ESS) represents a significant leap in minimally invasive techniques, offering direct visualization and targeted treatment for various spinal pathologies. This article discusses the evolution and current applications of ESS, emphasizing its ability to reduce tissue trauma, preserve spinal stability, and accelerate patient recovery. It points to the expanding indications and the need for specialized training, positioning ESS as a critical component of modern spine care[2].

Robotic Assistance is increasingly integrated into spine surgery, promising enhanced precision, accuracy, and safety. This piece reviews the current state of robotic systems, highlighting their utility in pedicle screw placement, deformity correction, and navigation. It discusses how robotic platforms mitigate human error and improve surgical workflow, while also acknowledging the learning curve and cost implications. The trajectory suggests continued innovation, making robotics a standard tool in advanced spine centers[3].

Augmented Reality (AR) is emerging as a powerful tool in spine surgery, offering surgeons real-time, overlayed anatomical and navigational data directly within their operative field. This systematic review explores the current evidence on ARs application, particularly in pedicle screw insertion and tumor resection. It highlights ARs potential to improve accuracy, reduce radiation exposure, and enhance surgical planning and execution, marking it as a transformative technology for future spinal interventions[4].

Artificial Intelligence (AI) is rapidly gaining traction in spine surgery, offering capabilities from diagnostic image analysis to personalized treatment planning and predictive outcomes. This article examines the current landscape of AI applications, demonstrating how machine learning algorithms aid in surgical decision-making, optimize operative techniques, and improve patient safety. It envisions a future where AI integrates seamlessly into the surgical workflow, ushering in an era of data-driven, highly individualized spine care[5].

Outpatient Spine Surgery is gaining traction, allowing selected patients to undergo procedures and return home the same day. This article explores the evolving criteria for patient selection and the surgical techniques that facilitate this shift, emphasizing safety protocols and optimal postoperative care. It underscores the benefits of reduced hospitalization costs and improved patient satisfaction, while cautiously expanding the scope of treatable conditions in an ambulatory setting[6].

Three-dimensional (3D) Printing technology is transforming spine surgery by enabling the creation of patient-specific anatomical models, surgical guides, and custom implants. This review details the diverse applications of 3D Printing, from enhancing preoperative planning and resident training to crafting custom cages and prostheses. It highlights how this personalization improves surgical accuracy, reduces operative time, and optimizes outcomes, paving the way for truly individualized spinal care[7].

Navigation Systems have become indispensable in spinal surgery, significantly improving the accuracy and safety of procedures like pedicle screw insertion. This comprehensive review explores the evolution and current capabilities of these systems, including fluoroscopy-based, CT-based, and electromagnetic navigation. It discusses how they provide real-time guidance, reduce intraoperative complications, and are particularly beneficial in complex anatomical cases, solidifying their role as a standard of care[8].

Spinal Endoscopy has emerged as a preferred minimally invasive option for treating various spinal conditions, from disc herniations to spinal stenosis. This article delves into the specific indications for endoscopic approaches, detailing different techniques like transforaminal and interlaminar endoscopy. It reviews patient outcomes, highlighting benefits such as reduced postoperative pain, shorter hospital stays, and quicker recovery, cementing its place in the modern spinal surgeon's armamentarium[9].

Lumbar Interbody Fusion remains a cornerstone for treating degenerative spinal conditions, with various surgical approaches each offering distinct advantages. This review compares techniques such as anterior, posterior, transforaminal, and lateral lumbar interbody fusion (ALIF, PLIF, TLIF, LLIF), discussing their indications, biomechanical stability, and potential complications. It also explores emerging trends, including minimally invasive variations and advanced instrumentation, aiming to optimize fusion rates and functional recovery[10].

Description

The landscape of spinal care has been transformed by Minimally Invasive Spine Surgery (MISS), which significantly reduces muscle damage and improves patient recovery through advanced techniques and emerging technologies like robotics and navigation. This focus ensures anatomical preservation while achieving effective decompression and stabilization, pointing towards more personalized treatments [1]. Endoscopic Spine Surgery (ESS) marks another leap in minimally invasive

sive techniques, providing direct visualization for targeted treatments and reducing tissue trauma, preserving spinal stability, and accelerating recovery. ESS, with its expanding indications, is a vital part of modern spine care, requiring specialized training [2]. Similarly, Spinal Endoscopy is a preferred minimally invasive method for treating conditions such as disc herniations and spinal stenosis. Its benefits, including reduced postoperative pain, shorter hospital stays, and quicker recovery, solidify its role in current surgical practices [9].

Technological advancements are central to modern spine surgery. Robotic Assistance, increasingly integrated, boosts precision, accuracy, and safety, especially in tasks like pedicle screw placement and deformity correction. These platforms minimize human error and streamline surgical workflows, suggesting continued innovation will make robotics a standard tool [3]. Alongside this, Navigation Systems are crucial for improving the accuracy and safety of spinal procedures, offering real-time guidance using fluoroscopy-based, CT-based, and electromagnetic technologies. They are particularly valuable in complex cases, making them a standard of care [8]. Augmented Reality (AR) is also emerging, providing surgeons with real-time, overlayed anatomical and navigational data. This technology promises to enhance accuracy, reduce radiation exposure, and improve surgical planning, positioning AR as a transformative tool for future interventions [4].

Artificial Intelligence (AI) is rapidly being adopted in spine surgery for diagnostic image analysis, personalized treatment planning, and predictive outcomes. Machine learning algorithms enhance surgical decisionmaking, optimize techniques, and improve patient safety, leading towards data-driven and individualized spine care [5]. Furthermore, Three-dimensional (3D) Printing technology is revolutionizing the field by enabling patient-specific anatomical models, surgical guides, and custom implants. This personalized approach improves surgical accuracy, reduces operative time, and optimizes patient outcomes, paving the way for truly individualized spinal interventions [7].

Beyond technological integration, surgical practices are also evolving. Outpatient Spine Surgery allows selected patients to undergo procedures and return home the same day, offering benefits such as reduced hospitalization costs and improved patient satisfaction, while cautiously expanding the scope of treatable conditions in an ambulatory setting [6]. For degenerative spinal conditions, Lumbar Interbody Fusion remains a critical treatment. Different approaches, including anterior, posterior, transforaminal, and lateral lumbar interbody fusion (ALIF, PLIF, TLIF, LLIF), are continuously being refined with minimally invasive variations and advanced instrumentation to optimize fusion rates and functional recovery [10].

Conclusion

Spine surgery has seen a remarkable evolution towards minimally invasive techniques, such as Minimally Invasive Spine Surgery (MISS) and Endoscopic Spine Surgery (ESS), significantly reducing muscle damage, preserving spinal stability, and enhancing patient recovery. These approaches offer direct visualization and targeted treatments for a broad range of spinal conditions. Technological advancements are integral to this progress; Robotic Assistance and advanced Navigation Systems are crucial for boosting precision, accuracy, and safety, especially in complex procedures like pedicle screw placement, by providing real-time guidance. Augmented Reality (AR) further refines surgical planning and execution by overlaying real-time anatomical data. Artificial Intelligence (AI) is transforming diagnostics, personalized treatment planning, and predictive outcomes, moving to-

wards data-driven individualized care. Three-dimensional (3D) Printing enables the creation of patient-specific models and implants, improving surgical accuracy and reducing operative time. Additionally, Outpatient Spine Surgery is gaining traction, allowing selected patients to return home the same day, optimizing cost efficiency and patient satisfaction. Concurrent advancements in Lumbar Interbody Fusion techniques, including various minimally invasive approaches, are continuously refining functional recovery. This comprehensive evolution underscores a trajectory towards less invasive, more precise, and highly personalized spinal care.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Michael Y Wang, Luiz Pimenta, Ricardo Toscano. "Minimally Invasive Spine Surgery: Current Status and Future Directions." *Neurosurgery* 93 (2023):1008-1020.
2. Constantin Schizas, Raymond Hwa, Andreas Krüger. "Endoscopic Spine Surgery: The New Horizon." *Global Spine J* 10 (2020):8S-14S.
3. Soon-Joong Hyun, Ki-Jeong Kim, Wonil Choy. "Robotic Assistance in Spine Surgery: Current Status and Future Directions." *Asian Spine J* 14 (2020):550-564.
4. Edoardo Bressan, Sara Sella, Pietro Ruggieri. "Augmented Reality in Spine Surgery: A Systematic Review." *J Clin Med* 12 (2023):3736.
5. Hoon-Jae Kim, Jong-Keon Lim, Ji-Dong You. "Artificial Intelligence in Spine Surgery: Current Applications and Future Perspectives." *J Korean Neurosurg Soc* 64 (2021):327-336.
6. Vikas Singh, Kern Singh, Rahul Khanna. "Outpatient Spine Surgery: Expanding Indications and Maximizing Safety." *World Neurosurg* 146 (2021):176-180.
7. Di Fan, Yang Wang, Jiankun Hu. "The Role of 3D Printing in Spine Surgery: A Review of Current Applications and Future Directions." *Med Sci Monit* 28 (2022):e935406.
8. Reinis Zaborovskis, Sacha Pailhès, Olivier Gille. "Advanced Navigation Systems in Spinal Surgery: A Comprehensive Review." *Eur Spine J* 32 (2023):1121-1135.
9. Kyung-Chung Choi, Seong-Hwan Lee, Ji-Min Kim. "Spinal Endoscopy: Indications, Techniques, and Outcomes." *Clin Spine Surg* 32 (2019):E271-E277.
10. Jing Si Tan, Shi Wei Fan, Amanda Li Ang. "Lumbar Interbody Fusion: A Review of Surgical Approaches and Future Trends." *Ann Transl Med* 9 (2021):1192.

How to cite this article: Mitchell, David R.. "Minimally Invasive Spine: Tech-Enhanced Patient Care." *J Clin Neurol Neurosurg* 08 (2025):313.

***Address for Correspondence:** David, R. Mitchell, Department of Neurology, University College London, London, United Kingdom, E-mail: david.mitchell@ucl.ac.uk

Copyright: © 2025 Mitchell R. David This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Oct-2025, Manuscript No. jcnn-25-173645; **Editor assigned:** 06-Oct-2025, PreQC No. P-173645; **Reviewed:** 20-Oct-2025, QC No. Q-173645; **Revised:** 23-Oct-2025, Manuscript No. R-173645; **Published:** 30-Oct-2025, DOI: 10.37421/2684-6012.2025.8.313
