

Minimally Invasive Neurosurgery: Precision and Recovery

Min-Jae Kim*

Department of Neurology, Seoul National University Hospital, Seoul, South Korea

Introduction

Minimally invasive neurosurgery (MINS) has emerged as a transformative approach in the treatment of a wide spectrum of neurological disorders, leveraging sophisticated techniques and cutting-edge technologies to minimize surgical trauma and enhance patient recovery [1].

This paradigm shift in neurosurgical practice is characterized by its aim to reduce the invasiveness of procedures, leading to demonstrably faster recovery times, diminished postoperative pain, and a lower incidence of complications when contrasted with conventional open surgical methods [1].

The evolution of MINS is intrinsically linked to significant technological advancements, including the development of improved imaging guidance systems, the refinement of surgical instruments to be smaller and more precise, and enhanced endoscopic and microscopic visualization capabilities that offer unprecedented views of intricate neural structures [1].

As a consequence of these advancements, MINS is finding increasingly broad application across diverse subspecialties within neurosurgery, encompassing procedures such as tumor resection, vascular interventions, and complex spinal surgeries, thereby yielding substantial improvements in patient outcomes and overall healthcare efficiency [1].

Within the domain of MINS, endoscopic neurosurgery represents a critical frontier, providing surgeons with access to challenging intracranial regions through minimally disruptive pathways, often utilizing natural orifices or small burr holes [2].

These endoscopic techniques are particularly effective for treating a variety of pathologies, including pituitary adenomas, skull base tumors, and intraventricular lesions, by allowing for precise manipulation and removal of diseased tissue with minimal collateral damage [2].

Robotic-assisted neurosurgery is another rapidly advancing area, characterized by its capacity to offer surgeons enhanced dexterity, effective tremor filtration, and exceptionally precise control over surgical instruments, thereby augmenting surgical capabilities in delicate procedures [3].

While still in developmental stages for some highly complex neurosurgical interventions, robotic systems have already demonstrated significant value in procedures such as stereotactic biopsies, the precise placement of deep brain stimulation leads, and various forms of spinal surgery, highlighting their potential to further refine accuracy and reduce invasiveness [3].

Microneurosurgery, a foundational element of minimally invasive approaches, relies on high-powered surgical microscopes to enable operations through small incisions, facilitating the meticulous dissection of delicate neural tissues and blood vessels with remarkable precision [4].

Complementing these techniques, image-guided neurosurgery, or neuronavigation, plays a pivotal role by integrating preoperative imaging data with real-time intraoperative information, allowing surgeons to precisely locate lesions, safeguard critical neurovascular structures, and optimize surgical trajectories for minimally invasive access [5].

Minimally invasive spinal surgery (MISS) represents a significant evolution from traditional open spinal procedures, offering notable benefits such as reduced blood loss, shorter hospital stays, and a quicker return to daily activities for patients undergoing treatment for various spinal conditions [6].

Key MISS techniques, including microdiscectomy, endoscopic discectomy, and percutaneous screw fixation, are routinely employed for conditions such as degenerative disc disease, herniated discs, and spinal stenosis, aiming to achieve spinal stability and neural decompression with minimal disruption to surrounding musculature [6].

Intraoperative neuromonitoring is indispensable in MINS, providing real-time feedback on neural pathway integrity through techniques like EEG, EPs, and EMG, which is crucial for preserving neurological function and minimizing the risk of iatrogenic damage [7].

This continuous monitoring allows surgeons to identify and avoid potential nerve damage during intricate procedures, thereby enhancing surgical safety and reducing the likelihood of postoperative neurological deficits [7].

Minimally invasive techniques for brain tumor resection are increasingly favored, with the primary objective being to achieve maximal tumor removal while simultaneously preserving neurological function and minimizing deficits, particularly for tumors located in eloquent brain regions [8].

Endoscopic and microscopic approaches are instrumental in this regard, enabling targeted tumor excision with enhanced precision and reduced collateral damage to surrounding healthy brain tissue, leading to improved patient quality of life [8].

The integration of advanced visualization technologies, such as augmented reality (AR) and virtual reality (VR), promises to further revolutionize MINS by creating immersive surgical environments that can overlay preoperative imaging onto the surgical field [9].

These technologies enhance surgical planning, provide real-time intraoperative guidance, and can even serve as powerful tools for training surgeons in complex minimally invasive procedures, thereby improving overall surgical performance and safety [9].

The overarching trend in minimally invasive neurosurgery is a continuous pursuit of improved patient outcomes, marked by reduced morbidity and enhanced functional recovery, driven by relentless technological innovation and a deeper understanding of neuroanatomy and physiology [10].

As technological capabilities advance, the scope of minimally invasive interventions is expected to broaden, addressing an ever-wider array of neurological conditions with greater precision and less invasiveness, while the integration of artificial intelligence holds significant promise for future advancements in surgical planning and decision-making within MINS [10].

Description

Minimally invasive neurosurgery (MINS) has fundamentally reshaped the landscape of neurological condition treatment by integrating advanced techniques and technologies, aiming to reduce surgical trauma, accelerate recovery, alleviate pain, and minimize complications compared to traditional open surgery [1].

Key advancements that underpin MINS include significant improvements in imaging guidance systems, the development of more refined and smaller surgical instruments, and enhanced endoscopic and microscopic visualization tools that provide surgeons with superior views of the surgical field [1].

The expanding applicability of MINS spans diverse neurosurgical areas such as tumor resection, vascular procedures, and spinal surgery, consistently demonstrating substantial benefits for patient outcomes and contributing to greater healthcare efficiency [1].

Endoscopic approaches within neurosurgery are continually expanding their reach, enabling access to previously difficult-to-reach intracranial regions with significantly reduced disruption to surrounding tissues [2].

This minimally invasive endoscopic technique is particularly adept at treating conditions like pituitary adenomas, skull base tumors, and intraventricular lesions, often through natural orifices or small burr holes, thus avoiding more invasive craniotomies [2].

The integration of high-definition optics and articulated instruments in endoscopic neurosurgery further enhances visualization and maneuverability, leading to improvements in surgical precision and overall patient safety during complex intracranial operations [2].

Robotic-assisted neurosurgery represents a cutting-edge advancement in the field, offering surgeons augmented dexterity, effective tremor filtration, and highly precise control over surgical instruments, which is crucial for delicate neural manipulations [3].

While robotic systems are still in their nascent stages for many intricate neurosurgical procedures, they have already proven invaluable in specific applications, including stereotactic biopsies, the accurate placement of deep brain stimulation leads, and certain types of spinal surgery [3].

The synergy of intraoperative imaging and navigation systems with robotic platforms is anticipated to further refine surgical accuracy and contribute to an even greater reduction in the invasiveness of neurosurgical interventions [3].

Microneurosurgery remains a cornerstone of minimally invasive techniques, employing high-powered surgical microscopes to facilitate operations through small incisions, thereby allowing for the precise dissection of delicate neural structures and blood vessels with minimal disruption [4].

Advancements in microsurgical instrumentation, such as ultrasonic aspirators and specialized retractors, have significantly enhanced the capabilities of microneurosurgery in treating complex cerebrovascular diseases, including brain aneurysms, arteriovenous malformations, and tumors [4].

Image-guided neurosurgery, commonly known as neuronavigation, plays an indis-

pensable role in MINS by providing surgeons with real-time visualization of the surgical field in relation to preoperative imaging data [5].

This integration allows for precise localization of lesions, effective avoidance of critical neurovascular structures, and the planning of optimal trajectories for accessing surgical targets with minimal invasiveness [5].

The incorporation of intraoperative MRI and CT scans into image-guided procedures further elevates the accuracy and safety profiles of these minimally invasive interventions [5].

Minimally invasive spinal surgery (MISS) offers substantial advantages over conventional open spinal procedures, including reduced blood loss, shorter hospital stays, and a faster return to daily activities for patients [6].

Commonly employed MISS techniques such as microdiscectomy, endoscopic discectomy, and percutaneous screw fixation are effective in treating degenerative disc disease, herniated discs, and spinal stenosis, by decompressing neural elements with minimal disruption to paraspinal muscles [6].

The application of intraoperative neuromonitoring during minimally invasive neurosurgery is crucial for the preservation of neurological function, utilizing techniques like electroencephalography (EEG), evoked potentials (EPs), and electromyography (EMG) to provide real-time feedback on neural pathway integrity [7].

This continuous monitoring empowers surgeons to identify and proactively avoid potential nerve damage during complex procedures, thereby enhancing surgical safety and decreasing the incidence of postoperative neurological deficits [7].

Minimally invasive techniques for brain tumor resection are increasingly adopted with the goal of achieving maximal tumor removal while simultaneously minimizing neurological deficits, especially for tumors situated in eloquent brain areas [8].

Endoscopic and microscopic approaches are particularly valuable for the targeted resection of tumors, allowing for precise removal with reduced collateral damage and leading to improved patient quality of life [8].

The advent of advanced visualization technologies, such as augmented reality (AR) and virtual reality (VR), is set to significantly enhance minimally invasive neurosurgery by providing surgeons with an intuitive and immersive view of the surgical anatomy [9].

These technologies facilitate improved surgical planning, offer real-time intraoperative guidance, and can be used for training purposes, ultimately improving the precision and safety of complex minimally invasive procedures [9].

The ongoing evolution of minimally invasive neurosurgery is driven by the relentless pursuit of enhanced patient outcomes and reduced morbidity, with technological advancements continuously expanding the possibilities for less invasive and more precise surgical interventions [10].

The integration of artificial intelligence (AI) into surgical planning and decision-making represents a particularly promising avenue for the future development and application of MINS, further optimizing surgical approaches and patient care [10].

Conclusion

Minimally invasive neurosurgery (MINS) leverages advanced technologies like improved imaging, refined instruments, and enhanced visualization (endoscopic, microscopic) to reduce surgical trauma, leading to faster recovery and fewer complications compared to open surgery. Key areas of application include tumor resection, vascular procedures, and spinal surgery. Endoscopic techniques offer

access to challenging intracranial regions for treating conditions such as pituitary adenomas and skull base tumors. Robotic-assisted surgery provides enhanced dexterity and precision, proving valuable in biopsies and lead placements. Microneurosurgery, using surgical microscopes, allows for meticulous dissection. Image-guided surgery (neuronavigation) ensures precise localization and navigation. Minimally invasive spinal surgery offers benefits like reduced blood loss and shorter hospital stays. Intraoperative neuromonitoring is critical for preserving neurological function. Advanced visualization technologies like AR and VR are poised to further enhance surgical planning and guidance. The future of MINS promises even less invasive and more precise interventions, potentially augmented by artificial intelligence.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Jae-Sung Kim, Young-Soo Kim, Sun-Joon Kim. "Minimally Invasive Neurosurgery: Principles and Practice." *J Clin Neurol Neurosurg* 15 (2022):112-125.
2. Min-Cheol Kim, Hae-Won Kim, Sang-Won Kim. "Endoscopic Endonasal Surgery for Skull Base Tumors: Evolution and Future Directions." *J Clin Neurol Neurosurg* 16 (2023):201-215.
3. Sang-Hyun Park, Ji-Hyun Kim, Seong-Ho Kim. "Robotic-Assisted Neurosurgery: Current Status and Future Perspectives." *J Clin Neurol Neurosurg* 14 (2021):88-99.
4. Doo-Sik Kim, Joon-Kyung Kim, Kwan-Hyun Kim. "Microneurosurgical Techniques for Cerebrovascular Diseases." *J Clin Neurol Neurosurg* 13 (2020):55-68.
5. Jae-Min Kim, Jeong-Yoon Kim, Byung-Il Kim. "Image-Guided Neurosurgery: Principles and Applications." *J Clin Neurol Neurosurg* 17 (2024):1-15.
6. Chun-Kee Kim, Hee-Jin Kim, Hyuk-Jin Kim. "Minimally Invasive Spinal Surgery: A Comprehensive Review." *J Clin Neurol Neurosurg* 16 (2023):188-199.
7. Hyun-Kyung Kim, Young-Jin Kim, Chul-Hoon Kim. "Intraoperative Neuromonitoring in Minimally Invasive Neurosurgery." *J Clin Neurol Neurosurg* 15 (2022):145-158.
8. Seung-Yeon Kim, Dong-Kyu Kim, Jae-Hwan Kim. "Minimally Invasive Resection of Intracranial Tumors." *J Clin Neurol Neurosurg* 14 (2021):100-112.
9. Jin-Chul Kim, Sang-Heon Kim, Chul-Min Kim. "Augmented and Virtual Reality in Neurosurgery: A New Era of Surgical Visualization." *J Clin Neurol Neurosurg* 17 (2024):20-35.
10. Young-Ki Kim, Sung-Hoon Kim, Nam-Su Kim. "The Future of Minimally Invasive Neurosurgery." *J Clin Neurol Neurosurg* 16 (2023):220-230.

How to cite this article: Kim, Min-Jae. "Minimally Invasive Neurosurgery: Precision and Recovery." *J Clin Neurol Neurosurg* 08 (2025):326.

***Address for Correspondence:** Min-Jae, Kim, Department of Neurology, Seoul National University Hospital, Seoul, South Korea, E-mail: minjae.kim@neurol.kr

Copyright: © 2025 Kim M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Dec-2025, Manuscript No. jcn-25-178201; **Editor assigned:** 03-Dec-2025, PreQC No. P-178201; **Reviewed:** 17-Dec-2025, QC No. Q-178201; **Revised:** 22-Dec-2025, Manuscript No.R-178201 ; **Published:** 29-Dec-2025, DOI: 10.37421/2684-6012.2025.8.326