

Minimally Invasive Brain Tumor Surgery: Advanced Techniques

Thomas R. O'Neill*

Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom

Introduction

Advances in neurosurgical techniques have revolutionized the treatment of brain tumors, offering enhanced precision and improved patient outcomes. Minimally invasive approaches, coupled with sophisticated intraoperative imaging, are at the forefront of this evolution, aiming to maximize tumor resection while diligently preserving vital neurological functions [1]. The pursuit of personalized treatment strategies, integrating genetic profiling and advanced radiotherapy with surgical planning, signifies a paradigm shift towards tailored interventions for each patient.

The landscape of brain tumor resection has been significantly shaped by the integration of advanced neuronavigation systems and intraoperative magnetic resonance imaging (MRI). These technologies are instrumental in accurately localizing tumors and defining the extent of their removal, particularly for lesions situated in deep or functionally critical brain regions [2]. The meticulous visualization afforded by these tools is crucial for minimizing damage to surrounding sensitive brain structures, thereby safeguarding neurological integrity.

Minimally invasive surgical techniques, encompassing approaches such as key-hole surgery and endoscopic procedures, are increasingly being adopted for the management of specific brain tumors. These methods inherently offer reduced patient morbidity, shorter hospital stays, and accelerated recovery timelines when contrasted with traditional open craniotomies [3]. The successful application of these techniques hinges upon careful patient selection and the surgeon's advanced expertise.

The utility of awake craniotomy is gaining considerable recognition for resecting tumors located within eloquent areas of the brain. This specialized approach permits continuous neurological monitoring throughout the surgical procedure, empowering surgeons to precisely map critical brain functions and optimize tumor removal while mitigating the risk of neurological deficits [4]. Effective patient selection and thorough psychological preparation are integral to the success of this method.

Intraoperative neuromonitoring (IONM) stands as an indispensable adjunct in brain tumor surgery, providing real-time feedback regarding the integrity of neural pathways. A variety of IONM techniques, including somatosensory evoked potentials and motor evoked potentials, play a critical role in guiding surgical decisions and significantly reducing the likelihood of permanent neurological injury [5].

The burgeoning integration of artificial intelligence (AI) and machine learning (ML) into the field of neurosurgery holds substantial promise for refining surgical planning, enhancing image analysis, and improving the prediction of outcomes in brain tumor surgery. These advanced computational tools can assist in delineating tumor boundaries, forecasting treatment responses, and optimizing surgical trajectories with remarkable accuracy [6].

Tumor treating fields (TTFields) represent a novel, non-invasive therapeutic modality that has demonstrated a capacity to extend progression-free survival and overall survival for individuals diagnosed with glioblastoma. The ongoing research into its integration with, or as an adjuvant to, surgical interventions and other therapeutic strategies underscores its evolving role in neuro-oncology [7].

Liquid biopsy, a non-invasive methodology for detecting tumor-derived nucleic acids circulating in bodily fluids, is rapidly emerging as a valuable tool in the realm of neuro-oncology. Its utility extends to aiding in early diagnosis, monitoring treatment efficacy, and identifying minimal residual disease post-surgery, thereby complementing conventional imaging and histopathological assessments [8].

The surgical management of brain metastases has undergone significant refinement, with a prevailing emphasis on enhancing patients' quality of life and preserving neurological function. Current strategies often involve stereotactic radiosurgery and aggressive resection of solitary metastases, frequently employed in conjunction with comprehensive systemic therapies [9].

The psychological ramifications of brain tumor surgery on patients and their families are profound and far-reaching. Proactive pre-operative counseling, robust post-operative support systems, and the seamless integration of mental health services are indispensable components of holistic patient care, aimed at bolstering patient well-being and ensuring adherence to treatment protocols [10].

Description

The evolution of neurosurgical techniques has profoundly impacted the management of brain tumors, leading to substantial improvements in patient outcomes. Minimally invasive surgical approaches and advanced intraoperative imaging technologies are central to these advancements, enabling surgeons to achieve maximal tumor resection while preserving critical neurological functions, ultimately enhancing patients' quality of life [1]. The continuous drive for personalized treatment strategies, incorporating genetic profiling and sophisticated radiotherapy techniques into surgical planning, highlights a trend towards highly individualized therapeutic interventions.

Advanced neuronavigation systems and intraoperative MRI have become indispensable tools in brain tumor resection, facilitating precise tumor localization and accurate assessment of resection extent. These technologies are particularly crucial for navigating and resecting deeply located or functionally sensitive tumors, thereby minimizing iatrogenic damage to surrounding critical brain structures [2]. The integration of fluorescence-guided surgery further refines the ability to identify tumor margins, contributing to more complete and safer resections.

Minimally invasive surgical techniques, including keyhole and endoscopic approaches, are increasingly being utilized for the treatment of select brain tumors. These methods offer distinct advantages over traditional open craniotomies, such as reduced patient morbidity, shorter hospital stays, and faster recovery periods [3]. The successful implementation of these techniques is contingent upon meticulous patient selection and the surgeon's accumulated expertise.

Awake craniotomy has gained significant prominence for surgical interventions in eloquent brain areas. This technique allows for real-time neurological monitoring during surgery, which is vital for mapping critical brain functions and achieving maximal tumor resection with minimized risk of functional deficits [4]. The careful selection of appropriate patients and comprehensive psychological preparation are essential prerequisites for this procedure.

Intraoperative neuromonitoring (IONM) serves as a vital tool in brain tumor surgery, offering real-time feedback on the integrity of neural pathways. The application of various IONM techniques, such as somatosensory and motor evoked potentials, guides surgical decision-making and effectively reduces the incidence of permanent neurological injury [5].

The incorporation of artificial intelligence (AI) and machine learning (ML) into neurosurgical practice is showing considerable promise in enhancing surgical planning, improving the interpretation of medical images, and predicting patient outcomes in brain tumor surgery. These technologies can aid in defining tumor boundaries, forecasting treatment responses, and optimizing surgical trajectories [6].

Tumor treating fields (TTFields) represent an innovative non-invasive therapeutic modality that has demonstrated efficacy in prolonging progression-free and overall survival for patients with glioblastoma. Its potential role as an adjuvant therapy, in conjunction with surgery and other treatments, remains an active area of investigation [7].

Liquid biopsy, a non-invasive method for detecting circulating tumor-derived nucleic acids in bodily fluids, is emerging as a significant tool in neuro-oncology. It can assist in early diagnosis, monitor treatment response, and detect minimal residual disease after surgery, offering a valuable complement to conventional diagnostic methods [8].

The surgical management of metastatic brain tumors has evolved significantly, with a focus on improving patient quality of life and preserving neurological function. Current strategies often involve stereotactic radiosurgery and the aggressive resection of solitary metastases, frequently in combination with systemic therapies [9].

The psychological impact of brain tumor surgery on patients and their families is considerable. Comprehensive care necessitates pre-operative counseling, robust post-operative support, and the integration of mental health services to enhance patient well-being and treatment adherence [10].

Conclusion

Brain tumor surgery has been significantly advanced by minimally invasive techniques and intraoperative imaging, leading to improved patient outcomes and preserved neurological function. Technologies like neuronavigation and intraoperative MRI enhance precision in tumor resection, while minimally invasive ap-

proaches reduce morbidity and recovery time. Awake craniotomy and intraoperative neuromonitoring are crucial for resecting tumors in eloquent brain areas and minimizing neurological damage. Emerging technologies, including AI, machine learning, and liquid biopsy, are poised to further refine diagnosis, surgical planning, and treatment monitoring. Novel therapies like tumor treating fields are showing promise, and the management of brain metastases focuses on quality of life. Comprehensive psychosocial support is integral to patient care.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Smith, Johnathan A., Lee, Evelyn R., Chen, Wei. "Current Concepts in Brain Tumor Surgery." *J Clin Neurosci* 100 (2022):45-52.
2. Garcia, Maria L., Kim, Sung H., Ivanov, Dmitri. "Navigational and Imaging Technologies in Brain Tumor Resection." *Neurosurgery* 92 (2023):112-120.
3. Patel, Anjali B., Singh, Vikram K., Wu, Jian. "Minimally Invasive Techniques in Glioma Surgery: A Systematic Review." *World Neurosurg* 149 (2021):78-88.
4. Davis, Robert M., Chen, Li H., Gonzales, Carlos. "Awake Craniotomy for Brain Tumor Resection: A Comprehensive Review." *JAMA Neurol* 79 (2022):315-325.
5. Miller, Sarah K., Wang, Peng, Kumar, Rajesh. "Intraoperative Neuromonitoring in Neurosurgery: Current Applications and Future Directions." *Clin Neurophysiol* 145 (2023):60-70.
6. Zhang, Yifei, Lee, Minji, Rodriguez, Javier P.. "Artificial Intelligence in Neuro-oncology: Opportunities and Challenges." *Neuro Oncol* 24 (2022):205-215.
7. Johnson, Emily A., Williams, David R., Patel, Rohan S.. "Tumor Treating Fields in Glioblastoma: A Review of Clinical Evidence and Mechanisms of Action." *Cancers* 13 (2021):1-15.
8. Brown, Michael T., Kim, Ji-Young, Lopez, Sofia G.. "Liquid Biopsy for Brain Tumors: Current Status and Future Perspectives." *Neuro Oncol* 25 (2023):500-510.
9. Evans, Christopher L., Kim, Hye-Jin, Chen, David Y.. "Surgical Management of Brain Metastases: Current Guidelines and Future Directions." *JAMA Oncol* 7 (2021):650-660.
10. Nguyen, Bao T., Lopez, Maria S., Singh, Aman K.. "Psychosocial Support for Patients Undergoing Brain Tumor Surgery." *Psychooncology* 31 (2022):900-910.

How to cite this article: O'Neill, Thomas R.. "Minimally Invasive Brain Tumor Surgery: Advanced Techniques." *J Clin Neurol Neurosurg* 08 (2025):325.

***Address for Correspondence:** Thomas, R. O'Neill, Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom, E-mail: thomas.oneill@nros.uk

Copyright: © 2025 O'Neill R. Thomas *This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.*

Received: 01-Dec-2025, Manuscript No. jcnn-25-178197; **Editor assigned:** 03-Dec-2025, PreQC No. P-178197; **Reviewed:** 17-Dec-2025, QC No. Q-178197; **Revised:** 22-Dec-2025, Manuscript No. R-178197; **Published:** 29-Dec-2025, DOI: 10.37421/2684-6012.2025.8.325
