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Abstract

A mini-review of defects formation and engineering in energy and sensor materials through intentional doping and
microwave irradiation is presented. Intensive research interest has been observed in the development of Transition
Metal Oxides (TMOs) energy and sensor materials for industrial applications such as energy generation, energy
storage and sensor devices. A variety of selected notable reports are organized into sections depicting structural,
microstructural, luminescent and electronic properties of TMO materials and devices, regardless of their deep
synthetic chemistry. There are three types of Oxygen Vacancies (VO) related to TMO materials among which
neutrally ionized V 0, singly ionized Vo1+, and doubly ionized Vo2+. Oxygen vacancies (V) have been characterized
using several experimental techniques such as X-ray diffraction, Thermo-Gravimetric Analysis (TGA), Ultra-Violet
Visible Spectroscopy (UV-Vis), Photoluminescence (PL) spectroscopy, Raman spectroscopy, Electron Spin
Resonance (ESR), Electron Energy Loss Spectroscopy (EELS) and X-ray Photoelectron spectroscopy (XPS). High
resolution XPS O 1s core levels analysis is one of the most accurate analytical techniques to characterize VO in
conjunction with other techniques. The deconvolution of O 1s core levels using a Gaussian function into three peaks
Lattice oxygen (OL), surface hydroxyl oxygen (O-OH) and adsorbed oxygen (OS) has been widely used to correlate
XPS to XRD, UV-Vis, PL and Raman data. This review summarizes the representative reports of VO formation via
intentional doping or microwave irradiation in TMOs.

Keywords: Oxygen vacancies; TMOs; Doping; Microwave; Energy
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Introduction
Over the past two decades, oxygen vacancies (VO) have been widely

reported to dramatically alter structural, luminescent, catalytic and
electronic properties of materials applied in a variety of applications
such as energy, sensors and display technologies [1-9]. These defects
classified as point defects are till now the subject of a hot controversy
on their natural origin among the scientific community worldwide due
to the inherent challenges related to materials synthesis and
characterization management in the vast majority of experimental
fields. Oxygen vacancies exist in three states, namely neutrally ionized
V0, singly ionized V1+ and doubly ionized V2+, the first and the former
are stable (10,11) (Figure 1). Hitherto, fundamental studies have been
devoted to elucidate the factors characterizing point defects, most of
them have been investigated by first principle calculations [11,12]. The
main factors are the formation energy and defect concentration, the
former is well described in thermodynamic equilibrium by a
Boltzmann distribution while at the same time it is closely related to
the formation energy, defects with high formation energy are formed
in low concentration [11]. The formation energy of point defects
should not be considered as a constant due to its dependence to growth
conditions. Previous studies have revealed that the formation energy of
an oxygen vacancy depends on the abundance of the parent atoms
found in the material and becomes more complex when the oxygen

vacancy is charged because of the non-negligible effect of the electron
chemical potential [11].

The major role of oxygen vacancy on the modification of electronic
properties of materials has been discussed in a considerable volume of
reports from fundamental studies to experimental investigations. The
key fields of interest are primarily energy, secondly sensors and
luminescent materials. In all these fields, TMOs have demonstrated
exceptional performances, among them ZnO, TiO2, NiO, MnO, CdO,
Fe2O4, SnO2, Co3O4 [13-53] are gaining momentum. However, fewer
have successfully achieved intentional doping using foreign atoms to
control intrinsic materials properties [49-51,54].

More importantly, innovative bi- and tri-metallic multifunctional
nanostructure and heterostructure materials have been designed and
constructed to achieve extraordinary device performances in selected
topics such as reticular chemistry, electrochemical double-layer
capacitors (EDLC), pseudo-capacitors, electrochemical sensors, white
light emitting devices, solar cells, lithium-ion batteries, lithium-sulfur
batteries, photoelectrochemical cells and gas sensors [55-66].

The growing interest in device's performance engineering stems
among others from the possibility to intentionally tailor and control
their oxygen vacancy content. To achieve such goal there is a critical
need to judiciously undertake synthesis and characterization of
materials to be investigated in clean environment and also deeply
understand the effects of sample treatment on its lattice structure
properties. To date several factors have been identified to remarkably
alter the lattice structure properties of TMOs, among the major are the

Jo
ur

na
l o

f N
an

osciences: Current Research

ISSN: 2572-0813

Journal of Nanosciences: Current
Research

Kabongo et al., J Nanosci Curr Res 2018, 3:2
DOI: 10.4172/2572-0813.1000125

Review Article Open Access

J Nanosci Curr Res, an open access journal
ISSN: 2572-0813

Volume 3 • Issue 2 • 1000125

mailto:Guy.Kabongo@wits.ac.za
mailto:geekale@gmail.com


pressure, temperature and gas treatment environment. Moreover, the
exposure time to electromagnetic radiations sources such as Deep UV
lamps, induction sources, and microwave reactors have been found to
also contribute to the alteration of materials primitive lattice structure.
It should be noted that these lattice structure alterations may have
non- negligible direct contribution to the variation of oxygen vacancy
content as it can be achieved elsewhere from simple conventional
doping processes. Owing to the close correlation between materials
lattice structure and electronic band-structure properties, one should
have a precise understanding of the material band-structure in order to
constructively and optimally describe research observations and
findings.

Through structural doping the formation of oxygen defective sites
has been successfully achieved, while the resulting tensile strain was
revealed by the expansion of material lattice structure [67]. In fact, X-
ray diffraction analysis of the lattice structure quality and
crystallographic fingerprint may lead to the detection of possible
alteration of the lattice structure resulting from foreign atoms insertion
[68]. In their report, Kaur et al [68] demonstrated that doping a
transition metal oxide host material with foreign atoms resulted in a
tensile strain observed from XRD peak shift toward lower angles which
leads to better materials properties later on. Moreover, the slight
alteration observed in the lattice structure may have dramatic impact
in the materials performance enhancement or degradation, depending
of the targeted application.

Interestingly, Kumar et al. [69], have recently achieved lattice
structure expansion via microwave irradiation, this process leads to the
realization of high performing electrochemical spinel cathode
materials for energy storage applications. Likewise, Mesfin et al. [70]
and Jafta et al. [71] reported the same phenomenon and achieved
exceptional electrochemical properties. Several factors have been
identified by these authors to be responsible for these unique
observations but oxygen vacancy increase should be seriously
considered as the most plausible cause from a fundamental
understanding [71].

Hence, the selection of a particular material synthetic method is of
particular importance to the formation and careful control of oxygen
vacancy. To date synthesis assisted with microwave treatment has
proven to be one of the most effective approaches to meet such
performance [70,71]. Microwave irradiation has demonstrated
numerous advantages over other conventional materials processing
such as fast and effective heating during chemical reactions, high
product yield and environmental benign [72-74]. During microwave
irradiation, a direct diffusion of electromagnetic wave energy to the
material occurs via molecular interaction with the electric and
magnetic field vectors of microwaves generated by a magnetron which
produces waves in the frequency range of 300 MHz - 300 GHz (λ:1m-
1mm) (Figure 2). It is plausible that during the interaction of
microwaves with the material nonequilibrium processes occur, the
formation of oxygen deficient sites are then promoted in the material
lattice structure consecutively to entropy-driven desorption of lattice
oxygen in the lattice structure [75,76] (Figure 3). Seminal studies have
established that TMOs are among the best microwave absorbers and
that their electrical resistance decreases with temperature increase and
that microwave energy heats TMOs better than metals due to their low
electric field penetration [77].

This review covers recent studies that focus on spectroscopic
investigation of the versatile effects of oxygen vacancy on intrinsic
properties of TMO materials for energy conversion, energy storage,

sensors and solid state lighting. Special attention was devoted to XPS O
1s core level analysis of oxygen vacancy using GAUSSIAN function
deconvolution.

Figure 1: Local Atomic relaxations domain of oxygen vacancy in the
(a) neutrally, (b) singly and (c) doubly ionized states. Reproduced
with permission from ref. [78]. Copyright 2009 IOP publishing ltd.

Figure 2: Proposed schematic diagram describing the mechanism of
oxygen vacancy formation via microwave irradiation and its effect
on lattice structure and electronic band- structure. Eg and ΔE
represent the energy gap and the quantified red-shift resulting from
microwave irradiation which is shown by the red arrow.

Formation of Oxygen Vacancy

Structural doping
In a recent study, it has been demonstrated that using dopants one

can tune oxygen vacancy in TMO base devices, precisely studies
revealed that p-type dopants introduced holes into the system to lower
significantly the formation energy of oxygen vacancy [85]. Several
other methods have been successfully used to dope transition metal
oxide based materials and devices and hence generate oxygen
vacancies, such as combustion synthesis, solution- combustion, solid
state reaction, sol-gel [86-88], co-precipitation, hydrothermal [89],
sonochemical, chemical vapor deposition, plasma enhanced chemical
deposition, RF magnetron sputtering, evaporation, electrochemical
synthesis, spin coating, spray pyrolysis, and spray coating, etc. Park et
al. [90] have successfully doped ZnO with Co2+ ions and remarkably
analyzed the variation of VO in the undoped and Co-doped ZnO
samples via Maximum entropy method (MEM) using electron density
distribution derived from Rietveld refinement. The authors found that
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the ZnO unit cell volume was increased with Co2+ doping
concentration and that consecutively the amount of VO increased up
to a certain limit before dropping for higher doping concentration. The
author faced a challenge to completely assigned the abrupt increase
observed in the lowest Co2+ doping concentration and stated that
further analysis were needed. It is plausible that Co2+ ions may have
reached its saturation limit in the ZnO crystal lattice below 5 mol%
and above 1 mol% and this could not lead to a continuous increase in
VO content probably due to the segregation of Co2+ ions which are
very likely to have formed islands of dopants in the crystal lattice
instead of bonding.

Figure 3: The crystal structures of (A) TiO2, (B) Cr2O3, (C) V2O3,
(D) MnO2. Reproduced with permission from ref. [79]. Copyright
2015 The Royal Society of Chemistry. (E) Refined Crystal structure
of the CuO unit cell. Reproduced with permission from ref. [80].
Copyright 2014 Springer Nature Publishing Group. (F) Schematic
model of the CeO2 structure showing Ce3+-ions and oxygen
vacancy. The whitish color ball is Ce4+; the red color ball is O2- on
the lattice site; the red color circled ball is oxygen vacancy; the
unfilled white ball represents Ce3+ on the lattice site formed after
removing oxygen either from surface or from the interior of CeO2.
Reproduced with permission from ref. [81]. Copyright 2017
Springer Nature Publishing Group. (G) Atomic configurations for
the unit cell of spinel Co3O4. Reproduced with permission from ref.
[82]. Copyright 2014 The Royal Society of Chemistry. (H) The cubic
NiO crystal structure. Reproduced with permission from ref. [83].
Copyright 2015 Elsevier Ltd (I) A schematic representation of
wurtzite ZnO crystal structure. The Zn and O atoms are marked as
well in the schematic with ash and blue circles, respectively.
Reproduced with permission from ref. [84]. Copyright 2007 The
American Institute of Physics.

Microwave irradiation
Material and device properties have been successfully tailored via

microwave irradiation in a very recent past [81,91-92]. Microwave

irradiation is a rapid and efficient heating way for highly homogenous
materials processing which is eco-friendly and easy to manipulate as
compared to conventional synthetic approaches. This approach has
been used for large scale and cost- effective synthesis of supercapacitor
electrode materials at desired temperatures up to 1500°C and
controlled pressure (≤ 199 bar) at relatively short reaction time [93].
This technique has been used independently or in conjunction with
other processing methods to complement them and achieve high yield
innovative materials in the so-called microwave-assisted synthesis
[94-102]. In a seminal research work, Newnham and co-workers
investigated the microwave-matter interactions ; they reported that
subjecting a material to microwave which has two vector components,
namely, magnetic and electric field which induces in the material an
electric polarization P(C/m2) equivalent to the dipole moment (C-m)
per unit volume (m-3), hence generating thermodynamic
nonequilibrium entropy mechanism [77]. The authors identified
several polarization mechanisms in solids among which three major
leads to loss in the microwave region, namely, space charges arising
from localized electrical conduction, rotating electrical dipoles and
ionic polarization associated with far-infrared vibrations [77].

Characterization of Oxygen Vacancy
Several analytical techniques have been used to characterize oxygen

vacancies in transition metal oxides, namely, X-ray diffraction (XRD),
Thermo-Gravimetric Analysis (TGA), Ultra- Violet Visible
Spectroscopy (UV-Vis), Photoluminescence (PL) spectroscopy, Raman
spectroscopy, Electron Spin Resonance (ESR), Electron Energy Loss
Spectroscopy (EELS) and X-ray Photoelectron spectroscopy (XPS)
[9,90,103-108]. The detailed analysis of XPS O 1s core level which
consist of GAUSSIAN function deconvolution has been widely
accepted among the analytical techniques used to qualitatively analyze
VO and was carefully adopted to get more insights into O 1s medium
peak located at ~531 eV presented in Figure 4ab. This peak has been
ascribed to surface hydroxyl oxygen (O-OH) related to O2- ions that
are localized in the oxygen deficient regions within the ceramic lattice
[109,110]. Moreover, Yoshida et al. successfully investigated the effect
of microwave irradiation on electronic band-structure of ZnO via
absorption and emission spectroscopy (92). The authors systematically
demonstrated via PL spectroscopy that microwaves generated a new
deep level defect which lowers the bandgap of ZnO as illustrated in
Figure 4cd, and they assigned this defect level to zinc and oxygen
plasma or to the thermal effect induced by microwave. However,
particular attention should be given to the former assertion because
the nonequilibrium processes resulting from thermal effect may have
created oxygen vacancies which can be described via energy band-
structure as shown in Figure 4e. It is important to note that for detailed
quantitative analysis of oxygen vacancy Rutherford backscattering
spectroscopy and X-Ray absorption spectroscopy using synchrotron
radiation are more appropriate [111,112].
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Figure 4: Deconvoluted XPS O 1s core level for (a) undoped and (b)
Yb3+-doped ZnO Reproduced with permission from ref. (86).
Copyright 2014 Elsevier Ltd. (c) Bandgap electronic structure and
corresponding (d) energy band diagram at room temperature for
microwave (MW) irradiated and non-irradiated ZnO Reproduced
with permission from ref. (92). Copyright 2015 Elsevier Ltd. (e)
Electronic energy band structure of eigenstate and oxygen-deficient
ZnO, the pink dotted line represents the density of states of O 2p
before the reduction, the orange bidirectional arrow indicates the
work function (φ, φ´), the oxygen atoms are lost and unshared Zn
3d states move towards the CB to form a donor level (Ed), Evac and
Ef are the vacuum level and the Fermi level, respectively.
Reproduced with permission from ref. (25). Copyright 2017
Elsevier Ltd.

Oxygen Vacancy Enhanced Electrochemical
Performances for Energy Storage

Very recently exceptional class of materials have been uncovered,
these multifunctional materials have tremendous advantages and
exceptional performances in energy storage applications, namely,
Layered-Double Hydroxides (LDHs), Metal Organic Frameworks
(MOFs), Multishelled and nanostructured materials; among various
morphologies obtained hollow-spheres are the most efficient in energy
storage [113-116].

Oxygen vacancy plays an important role in tuning the physico-
chemical properties of these innovative materials applied in
supercapacitors, lithium ions batteries, lithium sulfur batteries, sodium
ion batteries, magnesium ion batteries and zinc air batteries. Some of
these innovative materials were produced via microwave assisted
synthesis. Copper and Nickel have been associated to produce via
microwave synthesis a Hollow-sphere MOFs material for enhanced

lithium battery performances [117]. Moreover, the authors revealed
that the matched composition of CuO@NiO resulted in an efficient
step-by-step lithium insertion reaction which finally contributed to the
excellent electrochemical properties as presented in Figure 5.
Furthermore, the core-shell architecture allowed easy lithium/electron
diffusion while the volume change was accommodated in the
microsphere pores of the bimetallic oxides [117].

Figure 5: (a) Illustration of the cationic exchange process of metal
organic framework (MOF) and its conversion to multi-layer hollow
structure. Electrochemical performances of multilayer CuO@NiO
spheres: (b) cycle voltammogram profile, (c) first cycle discharge
(lithium insertion) and charge (lithium extraction) curve, (d)
cycling performance at a current of 0.1 A.g-1, and (e) Nyquist plots
for the first, third and 200 cycles. Reproduced with permission from
Ref. [117]. Copyright 2015 The American Chemical Society.
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Figure 6: (a) Schematic illustration showing the formation of the
yolk-shell Ni/Zn-MOF microspheres and double-shelled NiO/ZnO
hollow spheres. (b) Low- and (c) high-magnification SEM images of
the Ni/Zn-MOF microspheres. (d) TEM image of the double-
shelled NiO/ZnO hollow spheres. (e) Cyclic voltammetry (CV) and
(f) galvanostatic charge-discharge (GCD) curves of the NiO/ZnO
electrode at different current densities. (g) Corresponding specific
capacitance of NiO/ZnO electrode calculated by the GCD curves.
(h) Cycle performance of NiO/ZnO electrode at a current density of
5.2 A.g-1 for 2000 cycles. Reproduced with permission from Ref.
[120]. Copyright 2017.

The concept has been widely adopted and improved by several
groups using different combination of TMOs and organic linkers to
achieve better storage properties in supercapacitors and batteries as
presented in Figures 6 and 7, respectively. In the same spirit, Li et al.
produced NiO/ZnO hierarchical double-shelled hollow spheres with
exceptional cycling stability up to 117% after 2000 cycles at a current
density of 5.2 A.g-1 [118]. Bruce Dunn group on the other hand
remarkably demonstrated the strategic influence of oxygen vacancy on
faster promotion of charge storage kinetics which makes it easy for Li
ions intercalation and de-intercalation [9]. That leads to enhanced
capacity up to ~ 320 mA hg-1 as shown in Figure 8. Teng Zhai and co-
workers have exceptionally demonstrated that oxygen vacancies could
enhance both conductivity and capacitance of nanorods based

wearable asymmetric supercapacitor [119]. The remarkable strategy
consisted of a simple hydrogenation treatment of MnO2 electrodes
which displayed exceptional rate capability and cycling with only a
moderate concentration of oxygen vacancies [119].

Figure 7: (a) Formation Process of Core/Shell ZnO/ZnCo2O4/C
Nanospheres (b) CV curves at a scan rate of 0.1 mV s-1 in the
voltage range of 0.01-3.0 V. (c) Charge/discharge profiles at a
current density of 0.1 A.g-1. (d) Cycling performance at a current
density of 0.5 A.g-1. (e) Rate capabilities of ZnO/ZnCo2O4/C anode.
Reproduced with permission from Ref. [121] Copyright 2015 The
American Chemical Society.

Oxygen Vacancy Dynamic in Photovolatiac Solar Cells
The increasing demand of clean and environmental benign energy

production sources is today in the heart of public and private sector
research institutes strategy development plans worldwide due to
environmental concerns related to conventional energy sources based
on fossil fuels and CO2 production. Researchers are currently driven to
achieve innovative solutions to the betterment of mankind life through
the development of pollution-free energy sources such as photovoltaic
solar cells. Regardless of the type of mechanism exploited to generate
and dissociate electron-hole pairs in solar cells, TiO2 has been
extensively used as a counter electrode and also a hole conducting
layer mainly in quantum dot and dye-sensitized solar cells [122-130].
In an astonishing investigation Su et al. [131] have for the first time
experimentally demonstrated using Electron Paramagnetic Resonance
(EPR) that oxygen vacancy could modulate photoelectrical conversion
efficiency in a TiO2 dye-sensitized solar cell grown via hydrogenation
at low temperature and mild pressure. Their exceptional findings are
summarized and presented in Figure 9. The effect of oxygen vacancy
on the band gap corroborates the results found in previous studies
[25]. Microwave synthesis has been used to synthesize highly
crystalline TiO2 with a shorter treatment time as compared to
conventional heating sources when used in solar cells application
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[132]. Hence, microwave heating has been demonstrated to be more
efficient than conventional heating sources such as muffle furnace,
nowadays a worldwide clue. Recently Ghosh and co-workers [133]
have systematically designed and fabricated via microwave a high
efficient counter electrode based on CuxS and grapheme oxide for
quantum dot sensitized solar cells. Owing to the challenges involved in
photoanode operation, particular care was devoted to its design in
order to effectively reduce the oxidized electrolyte, hereafter achieving
a 6.81% record efficiency of which corresponding results are depicted
in Figure 10.

Figure 8: (a) The most stable oxygen vacancy configuration and
polaron formation in R-MoO3-

x calculated from DFT. The Mo5+

ions are highlighted with blue. (b) Sweep rate dependence on
capacitance, (c) and (d) Cyclic voltammetry of the first three cycles
at 10mVs-1 and galvanostatic discharge curves (insets, at 50 mA.g-1)
in F-MoO3 and R-MoO3-x, respectively. Reproduced with
permission from ref. (9). Copyright 2016 Macmillan Publishers
Limited, part of Springer Nature.

Sensor Sensitivity Derived Oxygen Vacancy
From medical applications, namely, diseases detection and

environmental protection in the mining sector, there are rooms for
improvements. The growing momentum observed in the design and
fabrication of electrochemical, gas and chemical sensors drive
researchers and technologists to meet the agenda of the next
generation of sensor devices which are sought to be flexible, highly
selective and sensitive than ever. TMOs based sensors have been
widely investigated for the past two decades and a lot of issues related
to their practical application have been exposed and much still need to
be done for easy and safe domestic usage. Among the vast majority of
synthetic methods used to produce TMOs, microwave has a place of
choice due to the extraordinary variety of materials morphology which
also exhibit unique physic-chemical properties such as high surface
area and exceptional conductivity to cite few. It should be noted that
oxygen vacancy plays a critical role in materials conductivity as
demonstrated by several authors (9,25,92).

Figure 9: (a) Charge transfer mechanism for photoanode-modified
DSSC based on H-TiO2. (b) IPCE spectra of DSSCs based on TiO2
and H-TiO2 annealed at different temperature. (c) Photocurrent-
photovoltage curves under illumination (d) Valence band of TiO2
and H-TiO2 treated under different temperatures. (e) EPR spectra
recorded at 300 K for TiO2, H-TiO2 samples. (f) Mott-Schottky plots
collected in the dark for the TiO2 and the H-TiO2 nanopowders.
Inset Figure: Mott-Schottky plots of HTiO2 nanopowders prepared
at 300°C, 400°C, 500°C, and 600°C, which was collected under the
same conditions. (g) Schematic diagrams of electronic band
structure of TiO2 and H-TiO2. EVo located below the TiO2
conduction band represents the energy levels of oxygen vacancy.
Reproduced with permission from ref. [131]. Copyright 2015 The
American Chemical Society.

From a fundamental point of view, it is well agreed that the targeted
metal oxide sensors resistance modulation is the result of a surface
mechanism of oxidation-reduction reaction (ORR) involving
chemisorbed oxygen with the molecules of the detected gases [134].
This implies that there exist in metal oxides based sensors a relative
correlation between their sensitivity and the concentration of surface
adsorbed oxygen [134]. In the same spirit, several authors have
reported results in agreement of this understanding, and in particular
it should be pointed out that the samples investigated in these studies
were produced via microwave-assisted synthesis [89,135-139].
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Figure 10: (a) J-V characteristics, (b) Nyquist plot and (c) Tafel
polarization characteristics of Pt, brass/Cu2S and Cu1.18S
composites with 10 wt% CNT, GOR and GO. (d) Stability tests: 50
cycles of CV plots for Cu1.18S-GOR as the working electrode in a
three electrode cell. The insets show the CV plots of the Cu1.18S
working electrode for 50 cycles and Pt for 10 cycles, with an arrow
showing the downward shift in current density over an increasing
number of cycles. (e) Energy band diagram (not to scale) of
Cu1.18S-GOR CE showing electron transfer. The energy levels of
GO are also indicated. Reproduced with permission from ref. [133].
Copyright 2016 The Royal Society of Chemistry.

Via oxygen vacancy modulation investigated using XPS, Wang and
colleagues [134] enhanced sensing performance and mechanism of
hydrogenated NiO particles. The innovative concept investigated based
on hydrogenation consisted in increasing the density of unsaturated
transition metal atoms with dangling bonds on the surface, this
concept was investigated elsewhere using Raman spectroscopy [104].
In the study by Wang et al., for which the sensing reaction mechanism
is described and presented in the Figure 11, the XPS analysis revealed
that the relative amount (%) of oxygen vacancy increased with increase
hydrogenated time as shown in Figure 11. The authors found
reasonable to conclude that the sensing properties enhancement
resulting from hydrogenation may originate from the increase of the
relative percentage of OV and OC GAUSSIAN components in the XPS
O 1s core levels and also the decrease in the amount of -OH group
[134]. Due to its role on the electronic band gap decrease and
conductivity increase discussed earlier in section 3, oxygen vacancy
increase could be considered as the main factor responsible for
enhanced sensing activity. The response and recovery along with the
sensors resistance are summarized in the Figure 12.

Figure 11: Schematic diagram of hydrogenation reaction of NiO
particles. (b)-(d) Sensing reaction mechanism for NiO sensing
materials. The letter Ni in red is unsaturated Ni atom with dangling
bonds. Black e- and red e- represent the electron captured by O2
and free electron, respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web
version of this article.).The survey spectra, (e) Ni 2p3/2, 2p1/2 and
(f)-(i) O 1s spectra of the hydrogenated and non-hydrogenated NiO
samples, (f) NiO, (g) NiO-H-6, (h) NiO-H-12 and (i) NiO-H-24.
Reproduced with permission from ref. [134]. Copyright 2017
Elsevier Ltd.

Oxygen Vacancy Modulation for Efficient Control of
Field Emission and Light Emitting Devices Properties

Since the past two decades, the display technology industry is
experiencing a considerable investment of scientists and technologists
to the realization of white light emitting materials and devices. It has
been however demonstrated that controlling these devices calorimetric
performances is closely dependent on their oxygen vacancy content
[140-142]. A number of research groups have devoted their efforts to
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synthesize these light emitting materials using microwave approach
[143-146].

Figure 12: Response and recovery curves of the sensors based on the
hydrogenated and non- hydrogenated NiO samples towards
different concentrations of a) acetone, b) formaldehyde, c)
triethylamine and d) ethanol at 350 °C and a relative humidity of
15-22%. (The relative humidity values were measured at 18-22 °C).
The response curves of the sensors based on the hydrogenated and
non-hydrogenated NiO samples towards different concentrations of
(e) acetone, (f) formaldehyde, (g) triethylamine and (h) ethanol at
350 °C and a relative humidity of 15-22%. (The relative humidity
values were measured at 18-22 °C). (i) The resistances of the sensors
based on the hydrogenated and nonhydrogenated NiO samples in
air and in different concentrations of ethanol vapor at 350 °C and a
relative humidity of 15%. (The relative humidity value was
measured at 24 °C. The concentrations labeled in this figure
represent the injected concentration of ethanol each time.).
Reproduced with permission from ref. [134]. Copyright 2017
Elsevier Ltd.

Two years ago a thorough investigation by Zhang et al. [147] was
conducted to elucidate on the role of oxygen vacancy on the persistent
luminescence of a terbium doped light emitting material. The
investigators focused their effort on unraveling the origin of defects
involved in the enhancement of persistent luminescence for samples

annealed in an oxygen-poor atmosphere. They observed via
thermoluminescence spectroscopy analysis that the increase of
persistent luminescence was accompanied by oxygen vacancy content
increase. Moreover, a comparison of defect energy levels was
conducted between their experimental findings and theoretical
calculations derived from Khon-Sham levels studies by Freysoldt and
co-worker [148]. They proposed a re-evaluation of the theoretical
result obtained for the depth of doubly charged VO2+ at 0.69-0.74 eV
as compared to 1 eV below the conduction band [147]. In the same
line, Xu et al. [149] investigated red phosphorescence of Sr2SnO4:Sm3+

phosphor successively sintered in air and 10-2 Torr vacuum
atmosphere. The later treatment option contributed to the increase in
oxygen vacancies amount which according to authors acted as the
sensitizer and electron traps for effective energy transfer from the host
matrix Sr2SnO4 to the dopant Sm3+. The findings of their study are
summarized in Figure 13. Finally, remarkable enhanced
phosphorescence properties were achieved by the authors after vacuum
sintering process [149].

Figure 13: (A) Emission (λex = 254 nm) and excitation (λem = 622
nm) spectra of Sr2SnO4 and Sr2SnO4:Sm3+. (a) is the emission
spectrum of the air-sintered Sr2SnO4: Sm3+. (b), (d) and inset are
the emission spectra of Sr2SnO4: Sm3+ sintered in vacuum. (c) and
(e) are the emission spectra of Sr2SnO4 sintered in vacuum and air,
respectively. Left dash curve is the excitation spectrum of Sr2SnO4:
Sm3+ sintered in vacuum. (B) Afterglow decay curves of Sr2SnO4:
Sm3+ sintered in air and vacuum. Inset: long afterglow photographs
of Sr2SnO4: Sm3+ sintered in air and vacuum. The photographs were
taken in the darkroom for 1 min after the removal of the 254-nm
ultraviolet lamp. (C) Thermoluminescence glow curves of the
vacuum-sintered Sr2SnO4 and Sr2SnO4: Sm3+. Reproduced with
permission from ref. (149). Copyright 2010 The Optical Society of
America.

In a very recent research work, Ai-Zhen Liao et al. [150] successfully
increased field emission properties of a device based on α-Fe2O3
nanorod arrays via conductivity increase and work function decrease
through polaronic hopping mechanism owing to oxygen vacancy. The
significant findings of the study among which band-structure
modification similarly reported by earlier authors are summarized in
the Figure 14 shown below [25,92]. Unambiguously the investigation
revealed according to the authors that oxygen deficient HNAs were
potential candidates for nanoelectronic applications and more
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precisely in cutting-edge field of electron emitter devices and flat panel
displays [150].

Figure 14: Left panel (a) UV-vis absorption spectra of the oxygen-
deficient HNAs annealed at 300°C, 400°C, 450°C, 500°C and 550°C,
respectively, and pristine HNAs annealed at 550°C. (b) Plots of
(αhʋ)2 vs (hʋ) for these samples, from whose tangents we obtain (c)
the corresponding variations of the band gap with annealing
temperature. Right panel (a) I-V characteristics of oxygen-deficient
HNAs annealed at 300°C, 400°C, 450°C, 500°C, and 550°C and
pristine HNAs annealed at 550°C, and (b) the corresponding
specific conductivity as a function. (c) J-E curves of pristine HNAs
annealed at 550°C and oxygen-deficient HNAs annealed at 300°C,
400°C, 450°C, 500°C, and 550°C. Reproduced with permission from
ref. [150]. Copyright 2016 The American Vacuum Society.

Conclusion
This mini-review paper provides an overview of microwave

irradiation tuning of oxygen vacancy and its role in tailoring materials
properties. The key performances of energy storage, sensor and light
emitting materials have been widely assigned to oxygen vacancy.
Various approaches have been reported to account for oxygen vacancy
control among which microwave irradiation is one of the most
accessible and cost effective. It has been demonstrated that at some
extent oxygen vacancy increase is responsible of the p-type
conductivity observed in these materials and plays a considerable role
in the exceptional performances documented in the literature. Due to
thermodynamic nonequilibium processes that occur during
microwave irradiation which contribute to the formation of oxygen
deficient sites in the lattice structure, microwave treatment should be
considered as an effective approach to boost electrochemical, sensing

and optical properties via protonic conductivity enhancement among
others. A consistent observation of the microwave effect on the band
structure modification has been established, which in most cases
resulted in band-gap decrease due to the creation of defects levels
above the valence band highest unoccupied level and below the
conduction band lowest occupied level. These lead to the overall
agreement that oxygen vacancy enhance electronic conductivity and
carriers mobility in most materials and devices leading to easy
transport of injected electrons through oxygen deficient sites. Further
thermodynamic nonequilibrium processes can be studied from other
electromagnetic radiation sources such as UV light to achieve same or
better results. However, in devices where exciton dissociation and
recombination processes occur, challenging control of interfacial
oxygen vacancy is required in order not to degrade their physico-
chemical performances. Finally, the attention of the reader should also
be directed to the importance of XPS analysis which is one of the most
accessible analytical techniques needed for effective oxygen vacancy
characterization.
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