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Abstract

smooth muscle cellular phenotypic switching in PAH.

Smooth muscle cells undergo a switching from contractile phenotype to synthetic phenotype in pulmonary
hypertension characterized by excessive proliferation and migration of smooth muscle cells. MicroRNAs are small non-
coding RNAs that can negatively regulate gene expression by directly binding with the 3'-UTR of mRNA. Numerous
microRNAs have been reported to modulate the smooth muscle cells phenotypic switching and been urged to become
possible therapeutic targets for pulmonary hypertension. This review will focus on the roles of microRNAs in regulating
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Pulmonary Arterial Hypertension (PAH) is a progressive fatal
disorder with a poor prognosis characterized by elevated pulmonary
arterial pressures leading to right ventricular failure and death [1,2].
Abnormal switching from a contractile phenotype to a synthetic
phenotype [3], are pivotal events in the development structural
remodeling of vasculatures associated with PAH [4]. In response to
a variety of environmental cues including growth factors, cell-cell
contacts and altered mechanical load, circulating hormones, smooth
muscle cells experience a phenotypic switching [5].

MicroRNAs (miRNAs) are a novel class of endogenous, small
and non-coding RNAs that function in transcriptional and post-
transcriptional regulation of gene expression by directly binding with
the 3-UTR of mRNA [6-8]. miRNAs can directly regulate about 30%
of the genes in a cell [9], therefore it is not surprising that miRNAs are
involved in the regulation of almost all major cellular function, including
developmental timing, cell death, cell proliferation [10,11], fat storage
[12], haematopoiesis [13-18] and patterning of the nervous system [19-
22]. Recent studies have revealed that many non-coding miRNAs can
be as novel phenotypic markers and modulators of Vascular Smooth
Muscle Cells (VSMCs). These findings display extensive implications
for the diagnosis and therapy of a variety of proliferative vascular
diseases [23], including PAH. The review will focus on the roles of
microRNAs in regulating smooth muscle cellular phenotypic switching
in pulmonary hypertension.

There are two classic pulmonary hypertension animal models apart
induced by monocrotaline (MCT) and hypoxia [24]. In pulmonary
hypertension induced by MCT, it usually occurs that endothelial cells
damage accompanied with the increasing release of growth factors.
PDGEF is one of the most common growth factors in PAH and released
primarily by vascular endothelial cells and platelets at the sites of
vascular injury [25]. Indeed, an increased expression of signaling
proteins in the PDGF pathway has been demonstrated in several
cardiovascular disorders [26]. Activation of PDGF inhibits smooth
muscle cell (SMC)-specific gene expression (SM22a, SM a-actin and
calponin) and increases the rate of proliferation and migration, leading
to dedifferentiation of VSMCs. Many miRNAs have been demonstrated
to play important roles in the stimulation of PDGF with indistinct
mechanisms.

MiR-15b is shown to be induced by PDGF in pulmonary artery
smooth muscle cells and it is critical for the repression of SMC-specific
contractile genes [27]. MiR-638 is abundantly expressed in SMCs and
markedly down-regulated in the PDGF stimulation. In differentiation
medium, miR-638 expression is significantly up-regulated to inhibit
SMC proliferation by targeting the orphan nuclear receptor NORI

[25]. MiR-24 also functions in the process and directly down-regulates
Tribbles like protein-3 (Trb3) expression which results in decreased
Smad protein levels and VSMC contractile genes expression [28].
Non-coding small miR-221/222 are novel regulators of vascular
neointimal lesion formation during PDGF pathway via their target
genes p27 (Kipl) and p57 (Kip2) [29]. PDGF stimulation could inhibit
the expression of miR-221, leading to down-regulation of the targets
p27 (Kipl) and c-Kit. Down-regulation of p27 (Kipl) is critical for
PDGF-mediated induction of cell proliferation. Decreased c-Kit causes
inhibition of SMC-specific contractile gene transcription by reducing
the expression of myocardin (myocd), a potent SMC-specific nuclear
coactivator [30]. Additionally, Davis BN et al. also found myocardin
reduced SMC migration by increasing expression of miR-24/29a,
resulting in down-regulation of platelet-derived growth factor receptor
B (PDGFRB) expression [31]. Meanwhile, another report shows that
overexpression of myocardin leads to significant induction of miR-1
expression and inhibition of SMC proliferation by targeting Pim-1, a
serine/threonine kinase [32].

What's more, the damaged endothelial cells also could secret miRNAs
to promote the SMC phenomenon switching via vesicles mediated
intercellular communication [33,34]. Vesicle-mediated miRNAs has
been proved in atherosclerosis while the research is very few in PAH,
and it will become a new research hotspot. MiR-126 is an endothelial
cell-restricted microRNA and highly expressed in endothelial cells
[35]. Targeted deletion of miR-126 in mice causes leaky vessels,
hemorrhaging and partial embryonic lethality, due to loss of vascular
integrity and defects in endothelial cell proliferation, migration and
angiogenesis [36]. Apoptotic endothelial cells at atherosclerotic plaques
release microvesicles known as apoptotic bodies which are enrich in
miR-126 into the circulation, and these microvesicles shuttle miR-126
to recipient neighboring vascular cells, their abundance correlates with
negative indicators of the disease [37], suggesting possible intercellular
communication or intercellular signal transduction mediated by
miR-126 between EC and SMC. So we believe that in pulmonary
hypertension, vesicles mediated miR-126 from ECs may also stimulate
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the proliferation of SMC. Besides, extracellular vesicles secreted by
KLF2-transduced or shear-stress-stimulated HUVECs are enriched in
miR-143/145 and control target gene expression in co-cultured SMCs
[34]. Several reports suggested that miR-143 and miR-145 play critical
roles in phenotype remodeling of VSMCs. Deficiency of miR-143 and
miR-145 leads to VSMCs phenotypic switching from a contractile to
synthetic phenotype [38], MiR-145 is down-regulated in PAH mouse
models which can protect against the development of PAH. Besides,
miR-145 is expressed in remodeled vessels in patient samples of
heritable PAH and idiopathic PAH [39].

Apart from vesicle mediated microRNAs, recently Zhou et al.
demonstrated that EC-secreted miR-126 and RNA-protein complexes
(miRNAs and Ago2) regulate SMC gene expression (Forkhead
Box O3, B cell Lymphoma 2 and Insulin Receptor substrate 1) and
cellular functions via paracrine effects [40]. They also detected the
association between Ago2 and miR-21, miR-221, miR-155, miR-143
and 145 and the results supporting the hypothesis that Ago-mediated
miRNAs transmission is a general mechanism regulating intercellular
communications [34].

Chronic hypoxia causes pulmonary vascular remodeling and leads
to Pulmonary Hypertension (PAH) and right ventricle hypertrophy
[41,42]. The remodeling process encompasses concentric medial
thickening of small arterioles, muscularization of previously capillary-
like vessels, and structural wall changes in larger pulmonary arteries
[43]. The pulmonary arterial muscularization is characterized by the
proliferation and phenotypic switching of smooth muscle cells. In
hypoxic pulmonary hypertension, misexpression of miRNAs has been
implicated in the pathologies.

Nuclear factor of activated T cells (NFAT) signaling pathway is
linked to PASMC proliferation and phenotypic modulation in hypoxia.
Down-regulation of miR-124 in hypoxia-treated PASMC is consistent
with the activation of NFAT signaling pathway in hypoxia by targeting
NFATcl, CAMTA1 and PTBP1 genes [44].Fhl-1 is a member of the LIM
family and acts as an early key protein in the mechanism of PAH [45].
It is regulated by HIF-1a in a feedback loop that serves to limit HIF-
la activity under conditions of prolonged hypoxia [46,47]. Hypoxia-
induced down-regulation of miR-206 promotes PAH by targeting
the HIF-1a/Fhl-1 pathway in PASMCs [46]. MiR-210 plays an anti-
apoptotic role in HPASMC via interaction with transcription factor
E2F3 [48]. MiR-138 has the similar effects in PAH by interaction with
serine/threonine kinase Mstl and preventing caspase activation and
Bcl-2 signaling [4]. Hypoxia also could produce a significant inhibition
of miRNA-328 expression, which is involved in PA vasoconstriction
and remodeling by targeting at insulin growth factor 1 receptor
and L-type calcium channel-alC [49]. MiR-24 overexpression has
detrimental effects on the SMC functional capacity inducing apoptosis,
migration defects, enhanced autophagy and loss of contractile marker
genes by targeting heme oxygenase 1 [50]. MiR-21 plays a significant
role in hypoxia-mediated SMC phenotype by targeting PDCD4, SPRY2
and PPARa [51]. These miRNAs are potential regulators of hypoxia-
mediated proliferation, apoptosis and differentiation of PASMCs. They
are therefore recognized as novel treatment strategies in PAH [52].

Conclusion

MicroRNAs play an important role in the SMC phenotypic switching
in pulmonary hypertension in response to different stimulus and they
may become potential novel therapeutic agents in the cardiovascular
diseases. However it still has a far way to go because of the little data in
vivo in patients. The stability and safety of miRNA and targeted miRNA
delivery should draw more attention in the future.
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