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Abstract
Disequilibrium between bone resorption and bone formation may cause osteoporosis that reduces bone integrity 

and physiological function of skeletal system. Osteoblast and osteoclast genesis are two major of biological events 
that act in bone turnover and dynamic rate of bone remodeling. Ample evidences have been revealed that RANK-L/
OPG, Wnt and BMP Pathways are crucial pathways involved in osteoporosis. Treatment of osteoporosis is becoming 
important task in post menopause women and old people. Current treatment strategies with osteoporosis drugs are 
mainly by inhibiting the bone-resorbtion. However, these synthetic medicines have limitless side effects. Several 
studies have established the important of a group of small non-coding RNAs (MiRNAs) which involve in pathogenesis 
osteoporosis, bone remodeling, osteoblast differentiation and osteoclast formation and has consider as a gold 
biomarker for osteoporosis treatment. The pathogenicity factors of osteoporosis, pathways involved in the disease and 
potential replacement treatment have been emphasized in this paper.
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Introduction
Osteoporosis can be defined as a disease of bone metabolism 

associated with low bone mass and micro-architectual deterioration, 
which increase the risk of bone fracture [1]. Etiologically this disease 
has a complex interaction between genetics and environmental factors 
and lifestyle with an disequilibrium between two critical biological 
processes namely osteoblastic bone formation and osteoclastic bone 
resorption [2,3]. Approximately 28 million individuals are involved 
and estimated 1.5 million fractures take place annually in United States 
[4]. Disease is categorized as primary, which is closely correlated with 
age and sex, and secondary, that occurs at any age which effecting men 
and women equally. At the molecular level, three critical pathways 
including Wnt Pathway, BMP Pathway and RANK-L/OPG Pathway are 
involved in osteoporosis and bone remodeling process. Osteoporosis 
basing to be a serious public health issue especially for these two groups 
of population, rarely elderly and post-menopausal osteoporosis women 
[4]. Although drug selection for osteoporosis is limited but evidence 
has demonstrated the crucial role of MiRNAs in osteoporosis treatment 
[5]. This review highlighted the pathogenesis of osteoporosis, molecular 
mechanisms involved in the disease and comprehensive review of 
osteoporosis treatment using chemical drugs and MiRNAs therapy as a 
potential novel therapeutic agent in osteoporosis. 

Literature Review
Pathogenesis of osteoporosis 

Osteoblastogenesis and impact osteoclastogenesis are two crucial 
biological events of bone turnover which can reflect the dynamic rate of 
bone remodeling [6,7]. Cumulating evidence suggested that three major 
molecular pathways including RANK-L/OPG Pathway, Wnt Pathway 
and BMP Pathway are involved in pathogenesis of osteoporosis. 

Receptor activator of NF-kB ligand- osteoprotegerin 
(RANKL-OPG Pathway) 

Various factors, receptor activator of NF-kB ligand (RANKL) and 
macrophage colony stimulating factor (M-CSF), are secreted from 
osteoblasts. These factors perform like a regulator in the process of 

differentiation of osteoclast progenitors to mature osteoclast. The 
cells are detected by expression of various markers such as calcitonin 
receptor [8-11], and alpha v beta 3 integrin chain (αvβ3) [12]. The 
process has activates various signaling pathways such as NF-kB with the 
involvement of RANK and RANKL, Many signaling pathways could be 
activated during the regulation of osteoclastogenesis, such as NF-kB, 
via binding of RANK and RANKL, important regulator of osteoclast 
precursors along with CD11b, CD14 and cFms  [13,14]. Inhibition 
of osteoclastogenesis occurs when Osteoprotegerin (OPG), a decoy 
protein secreted by osteoblasts, could bind to RANKL and RANK. 
Involvement of RANKL-OPG play a crucial role in the cross-talk 
between osteoblast-mediated bone formation and osteoclast-mediated 
bone resorption [13,14].

Wnt signaling pathway

Wnt pathway consists of several signaling proteins that have critical 
role in multiple biological processess such as cell survival, migration, 
apoptosis, cell proliferation and differentiation [15] that is involved 
in bone homeostasis, bone remodeling process and proliferation and 
differentiation of osteoblast progenitors [16-18]. Osteoblasts formation 
and bone-resorbing osteoclast are terminally differentiated cells with 
short lives. Therefore, replacement of both with a new ones from 
mesenchymal and hematopoietic stem cells are necessary [19,20]. 
Wnt/β-catenin also known as canonical wnt signaling pathway. It 
generates osteoblasts through the promotion of differentiation to 
osteoblast lineage from pluripotential mesenchymal stem cell [21]. 
In response to the pathway, cell expressed with osterix-1 (OSX1) 
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develops to osteoblast. The life span of mature osteoclasts increases 
by prevention of the apoptosis process in both β-catenin dependent 
and independent pathways [22]. On the other hand, wnt/β-catenin 
signaling able to decrease differentiation of osteoblast through 
encouragement of production and secretion of osteoprotegenin (OPG). 
OPG is a natural antagonist of RANKL [23]. It should be noticed that 
RANKL which is produced by primarily osteocytes is essential for the 
differentiation, survival and function of osteoblast and bone resorption 
[24]. In osteoclast production, bone marrow macrophages (BMMs) 
are differentiating into positive pre-osteoclasts and tartarate-resistant 
acid phosphatase (TRAP). These compounds are crucial in forming 
the mature osteoclast [25]. Wnt signaling has effect on the inhibiting 
of osteoclast activity by extracting Frizzled-related protein 1 (Sfrp1). 
As Sfrp1 is a binding site of Frizzled protein, it binds to RANKL 
competitively. This complex down-regulates the bone resorption 
[26,27] and decrease the level of 𝛽-catenin in osteoblast progenitors, 
hence caused the bone loss [28]. 

BMP pathways

A group of cytokines known as Bone morphogenetic proteins 
(BMPs), belong to transforming growth factor-β (TGF- β) superfamily. 
BMP is managed by RSmads and Co-Smad. The interaction of BMPs 
and responsive receptors influences the phosphorylation of Smads, thus 
enhance osteogenesis [29,30]. During this process, Runx2, a transcription 
factor connects many signal transductions in bone remodeling and 
osteoclast differentiation activated and regulates the genes associated to 
bone formation. It is necessary for activation of Smads by BMPs as well 
[31]. Ample evidence revealed that Runx2 enhances the level of PI3K/
Akt [32]. During osteoblast differentiation, another mediator molecule 
known as osterix. This molecule act as a mediator for Runx2 that play 
an important role in managing bone formation and bone resorption 
[33]. Several successful project implementations involving of HDAC 
family members in bone remodeling including HDAC1 and HDAC3 
(mostly found in bone tissues) [34,35]. 

Current treatment of osteoporosis

Currently, there is a limitation of drug selection for osteoporosis 
treatment. Those problems are due to various potential and toxicity 
issues. Thus, establishing a new approach for osteoporosis has become 
a great interest. A current treatment, Calcitonin, was related to cancer 
for long-term users, thus was eliminated as one of the treatment cycle 
in the Europe countries [36]. It leave Teriparatide (PTH 1-34) and PTH 
1-84 (stimulate the formation of new bone), and Biphosphonates (anti-
resoprption) as the remaining choices [37]. 

Anabolic agents in osteoporosis treatment

Anabolic agents are a class of osteoporosis treatment drug with 
many kinds of therapeutic targets that increase bone mass by directly 
stimulating new bone formation [38-48]. 

Parathyroid hormone (PTH) analogs: Human recombinant PTH 
is the only anabolic therapy that permitted to treat osteoporosis, such 
as PTH1-34 and PTH1-48 [49]. The most common side effects of PTH 
analogs are mild asymptomatic hypercalcamia and hypercalciuria 
whereas PTH-related protein cause hypercalcemia in malignant patients 
[49]. The main limitation for these kinds of drugs is the economic factor 
because PTH analogs are expensive to produce.

Potential therapeutic targets of osteoporosis: Having knowledge 
of the micro environmental control process that able to regulate bone 
modeling and bone remodeling is necessary in planning therapeutic 
for prevention and treatment of bone fragility. Resorption inhibitors 

are new class of osteoporosis treatment agents that are being developed 
based on their action mechanisms. ODN, DPH, GSK-3 inhibitor and 
DDK-1 inhibitor are examples of this new class of drugs for osteoporosis 
treatment [49].

Cathepsin K inhibitors 

Cathepsin K inhibitors, such as Odanacatib (ODN), are anti-
resorptive agents [38,39] that digest the type I collagen in resorption 
pits. They targeting the selective osteoclast digestive enzymes making 
their anti-resorptive effect are tolerable compare to more potent anti-
resorptive agents [40-42]. ODN has intermediate effect observed 
on continuous bone resorption and transient down regulate in bone 
formation [40-42]. Another experiment was done by a group of 
researchers that revealed cathepsin K deficiency led to maintenance of, 
or an increase, in bone formation in mice, rabbits and monkeys [43,44]. 
Odanacatib is undergoing phase III clinical trials in postmenopausal 
women and older men. Another example, ONO-5334, acts in 
suppressing the bone resorption is experiencing Phase I and II clinical 
trials [45]. Although, such these inhibitors have a successful clinical 
trials but most of them express multiple kinds of side effects [45].

Inhibition of DDK-1(Dikkoff-1) 

The inhibition of canonical Wnt signaling pathway take places by 
producing a trinary complex between LRP5, DKK-1 and DKK receptor. 
This kind of interaction encourages the fast internalization and 
reduction of LPR5 (low density lipoprotein receptor-related protein 
5). Later, it causes the inhibition of Wnt [46]. Contradiction to that, 
inhibition of the DKK-1 and LRP5 activates the Wnt signaling. In a 
study have been shown that using of anti-DKK-1 antibodies trigger 
increase number of osteoblasts and down regulate the number of 
osteoclasts [47]. This study was performed on a mouse model subjected 
with multiple myeloma.

Wnt/β catenin signaling pathway activators and inhibitors in 
osteoporosis

Binding of Wnt to the receptor and LPR5/6 in osteoclasts prevent 
the formation of GSK-3 (intracellular glycogen synthase kinase-3) in 
Wnt signaling pathway [22]. This inhibition of the signaling increases 
the level GSK3 that can inhibit the breakdown of catenin. This 
mechanism causes transcriptional co-activation of genes integral to 
bone formation [22]. Most of the bone active drugs mainly target at 
Wnt signaling pathway, which includes Wnt antagonist inhibition like 
sclerostin, DDK1 and SFRP1, along with neutralization of antibodies 
and suppression of glycogen synthase kinase 3β (GSK3β) which 
promotes phosphorylation and degradation of Ɓ-actin [48]. Number of 
endogenous antagonists constrains the Wnt/β-catenin pathway, namely 
Wnt-inhibitory factor and members of the secreted frizzled-related 
protein family. These endogenous antagonists inhibit the Wnt/β-catenin 
pathway and later cause the down-regulation of bone formation. Same 
reaction occurs for LRP5/6 inhibitors that block this signalling [48]. 

Osteoporosis linked MicroRNAs (MiRNAs)
MiRNAs able to control gene expression at the post-transcriptional 

level by targeting the 3’ un-translated region of mRNA [50]. They have 
ability to regulate various biological pathway including cells development, 
hematopoiesis, pathophysiological process, organogenesis, apoptosis, 
cell differentiation and tumor genesis [51]. Various studies indicated 
that MiRNAs regulate osteoclastogenesis and are involved during the 
pathogenesis of osteoporosis as well [52]. Most of the MiRNAs control 
the proliferation and differentiation of osteoblast. Some of MiRNAs 
play a crucial role in controlling the differentiation of osteoclast [53]. 
On the basis of previous investigation, aberrant MiRNAs expression 
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revealed a close association with osteoporosis, for example, miR-2861 
as a novel MiRNAs able to target histone deacetylase 5(HDAC5), a 
negative regulator of RUNX2, can cause familial osteoporosis [54]. 
Polymorphisms in miR-146a and miR-14b target sites (able to target 
FGF2) are significantly associated with femoral neck bone mineral 
density [55]. Table 1 shows a brief history of MiRNAs functions and 
their targets in osteoporosis [54-86]. 

Discussion and Conclusion
In recent years, osteoporosis becoming a serious public health 

problem in post-menopausal osteoporosis women and old population. 
Despite of an increasing number of advanced researches performed to 
gain better understanding of the pathogenesis and molecular pathways 
involved in osteoporosis grey zone is still exist in the knowledge of 
osteoporosis association with variety of molecular mechanisms. Recent 
approaches in managing osteoporosis are mainly focused on the bone-

MicroRNAs Target gene(s) MicroRNA Function References
miR-2861 HDAC5 Promotes osteoclast differentiation and primary osteoporosis induction [54,56]

miR-3960 HOXa2 A repressor of RUNX2 and acts as a regulatory role in osteoblast 
differentiation [57]

miR-223 Ago2, DGGR8, NFI-A, RANKL, TNF-α
Inhibit of osteoclast marker and transcription factor expression,  

decrease osteoclastogenesis (decrease bone resorption)-considered 
as a therapeutic target for a range of bone metabolic disorders

[58]

miR-206 Cx43 (Connexin43) Induction of osteoblast differentiation [59]
miR-29
miR-27

mir-335-5P

Wnt –Signaling pathway
 (DDK1, Kremen2, SFRP)

Up regulated ,  regulate osteoblast differentiation by suppresses of key 
wnt signaling antagonists [60,61]

miR-21 PDCD4, c-Fos Down regulation of programmed cell death-4 [58,62]
miR-93
miR-96

SP7 transcription factor 7
Zfp521

Regulatory role in stem cell and bone marrow mesenchymal stem cell 
differentiation [63,64]

miR-199a
miR-26a SMAD1 Regulatory role in skeletogenesis and its pathogenesis [65]

miR-126 VCAM1, HOXA9, Regulatory role in skeletogenesis and its pathogenesis [66]
miR-140 HDAC4 Regulatory role in skeletogenesis and its pathogenesis [67]

miR-125b ERBB2 Regulatory role in skeletogenesis and its pathogenesis, considered as 
a potential non- invasive biomarker for postmenopausal osteoporosis [67]

miR-29b
miR-133a, mir-135b

HDAC4, TGFβ3, ACVR2A, CTNNBIPI, DUSP
RUNX2, SMAD5

Skeletogenesis development [68]

miR-638
miR-663 JUN, FOSB, SP3, MYC Regulate osteoblastogenesis [69]

miR-29b MMP2, c-Fos, HDAC4, TGFβ3, ACVR2A, 
CTNNB1P1and DUSP

Down regulated in RNKL induced osteoclastogenesis that inhibits 
osteoclast differentiation [70]

miR-378
miR-146a NFIA Down regulated in osteoclast differentiation that able to inhibits 

differentiation
[71]

miR-133a CXCL11, CXCR3, SLC39A1
Up-Regulated in post-menopausal osteoporosis, Its overexpression 

(targeting SLC39A1 ) is negatively correlated to osteogenic 
differentiation of hMSCs

[72]

miR-338-3P RANKL Induction of osteoblast [73]
MiR-21 RANKL Induce osteoclastogenesis [74]

miR-503 RANKL Inhibits RANKL-induced osteoclast differentiation in post-menopausal 
osteoporosis women [75]

miR-150-3P β-catenin Suppresing of osteogenic differentiation through downregulation of 
β-catenin [76]

miR-125a TRAF6 Down regulated and Inhibits osteoclastogenesis and involve in 
metabolic disorders [77,78]

miR-221 RUNX2 Osteoclast differentiation [79]

miR-125b
miR-30

ERBB2
SMAD1 and RUNX2

Unregulated in postmenopausal osteoporosis women, as a potential 
biomarker

Unregulated in postmenopausal osteoporosis women
[80]

miR-34C LGR4 Promote osteoclast differentiation [81]
miR-705

miR-3077-5P
HOXA10
RUNX2

Inhibit mesenchymal stem cells (MSCs) osteoblast differentiation and 
promote adipocyte differentiation [82]

MiR-133b RUNX2, ALP, OCN  (osteocalcin) Negatively regulates the proliferation and osteogenic differentiation of 
bone marrow mesenchymal stem cell [83]

miR-148a
miR-422a

MAFB
TOB2, PAG1, IGF1, CD226

Unregulated during osteoclast differentiation and promote 
osteoclastogenesis [78,84]

miR-146a, 
miR-146b FGF2 Femoral neck bone mineral density, aberrant miR Expression [80-82]

miR-9 AMPK Signaling pathway Regulation of osteoblast differentiation and angiogenesis [83]
miR-7b DC-STAMP Osteoclast differentiation by suppressing NFATC1 and C-Fos signaling [84]

miR-106b RANKL Inhibits osteoclastogenesis and osteolysis [85,86]

Table 1: MiRNAs involved in osteoporosis pathogenicity, osteoblast formation and osteoclast differentiation.
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resorbing drugs accompanied with limitless adverse effects. Although, 
osteoporosis treatment based MiRNAs is becoming excellent options, 
but further investigation into MiRNAs role especially in controlling the 
differentiation of osteoclast need to be considered. 
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