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Introduction

The field of nonlinear partial differential equations (PDEs) is fundamental to under-
standing complex phenomena across various scientific disciplines. These equa-
tions, due to their inherent nonlinearity, often defy straightforward analytical solu-
tions, necessitating the development and application of sophisticated mathemat-
ical techniques. This introduction surveys recent advancements and established
methodologies for tackling these challenging equations, highlighting their impor-
tance in physics and related areas.

The Adomian decomposition method (ADM), variational iteration method (VIM),
and homotopy perturbation method (HPM) have emerged as powerful analytical
tools. These techniques provide systematic ways to obtain exact and approximate
solutions for a wide range of nonlinear PDEs. Their application spans diverse ar-
eas, from fluid dynamics to quantum mechanics, underscoring their broad utility in
theoretical and applied physics [1].

In plasma physics, the complexity of nonlinear PDEs necessitates specialized ap-
proaches. The unified solver method offers a novel framework for efficiently han-
dling these equations, providing a general approach to analytical solutions. This
method emphasizes its capability to integrate various analytical techniques, pre-
senting a potent instrument for theoretical physicists working with plasma systems
[2].

For phenomena exhibiting memory and hereditary properties, such as those mod-
eled by fractional differential equations, the fractional variational iteration method
(FVIM) has proven invaluable. This method is particularly adept at solving nonlin-
ear fractional partial differential equations, offering accurate solutions with reduced
computational demands compared to traditional numerical approaches [3].

Burgers-type equations, which frequently appear in fluid dynamics and other areas
of physics, present unique challenges due to their nonlinearity. A novel spectral
collocation method, utilizing Chebyshev polynomials and a collocation strategy,
transforms these PDEs into systems of algebraic equations, enabling efficient and
accurate solutions for benchmark problems [4].

Understanding the fundamental symmetries of nonlinear PDEs is crucial for simpli-
fying them and uncovering conserved quantities. Lie symmetry analysis provides
a powerful framework for this purpose. This method allows for the derivation of
conserved quantities and the reduction of PDE order, potentially leading to exact
solutions and deeper insights into the physical systems they describe [5].

Further refinements to established methods, such as the Adomian decomposition
method, continue to enhance their effectiveness. The introduction of an auxiliary
function approach (ADM-AF) aims to accelerate the convergence of decomposi-

tion series and improve the accuracy of approximate solutions, as demonstrated
in applications within fluid dynamics and heat transfer [6].

The quest for exact solutions to nonlinear PDEs remains a significant area of re-
search. The extended tanh-expansion method is a notable technique for finding
exact traveling wave solutions for certain classes of these equations. This method
has been successfully applied to equations relevant in nonlinear optics, revealing
various solitary and snoidal wave solutions [7].

In solid mechanics, problems involving nonlinear elastic and plastic deformations
often require robust numerical or analytical methods. A meshless local Petrov-
Galerkin (MLPG) method offers flexibility in handling complex geometries and
boundary conditions without the need for mesh generation, proving effective for
these nonlinear PDE challenges [8].

Beyond specific techniques, comparative studies are vital for guiding the selec-
tion of appropriate solution methods. Research comparing different analytical and
numerical methods, such as the finite difference method, ADM, and HPM, for non-
linear diffusion equations provides valuable insights into their relative accuracy,
efficiency, and stability, aiding researchers in choosing the most suitable approach
for specific physical problems [10].

Description

The realm of nonlinear partial differential equations (PDEs) necessitates a diverse
arsenal of analytical and numerical techniques due to their inherent complexity and
the wide array of physical phenomena they represent. This section details various
methodologies employed to solve these equations, highlighting their specific ap-
plications and advantages.

For general nonlinear PDEs encountered in physics, including those in fluid dy-
namics and quantummechanics, the Adomian decomposition method (ADM), vari-
ational iterationmethod (VIM), and homotopy perturbationmethod (HPM) offer sys-
tematic approaches to finding exact and approximate solutions. These methods
are valued for their theoretical underpinnings and practical applicability, providing
insights into their strengths and limitations [1].

In the specific context of plasma physics, the unified solver method has been de-
veloped to efficiently tackle nonlinear PDEs. This approach provides a general
framework for obtaining analytical solutions and integrates various analytical tech-
niques, serving as a powerful tool for theoretical physicists engaged in plasma
research [2].

When dealing with fractional nonlinear PDEs, which are crucial for modeling
systems with memory effects, the fractional variational iteration method (FVIM)
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emerges as a key technique. Its efficacy is demonstrated through case studies
in fractional diffusion and wave propagation, showing its ability to yield accurate
solutions with fewer computational resources compared to traditional numerical
methods [3].

Nonlinear Burgers-type equations, prevalent in fluid dynamics, are effectively ad-
dressed by novel spectral collocation methods. These methods, often employing
Chebyshev polynomials and a collocation strategy, transform the PDEs into sys-
tems of algebraic equations that can be solved efficiently, yielding high accuracy
for benchmark problems [4].

A deeper understanding of nonlinear PDEs in theoretical physics can be achieved
through Lie symmetry analysis. This powerful methodology allows for the deriva-
tion of conserved quantities and the reduction of the PDE’s order, paving the way
for the discovery of exact solutions and an exploration of their underlying symme-
tries [5].

Enhancements to existing methods, such as the Adomian decomposition method,
continue to be explored. The integration of an auxiliary function approach (ADM-
AF) aims to accelerate the convergence of the decomposition series and improve
the accuracy of approximate solutions, as illustrated in applications related to fluid
dynamics and heat transfer [6].

The pursuit of exact solutions for nonlinear PDEs is often achieved through spe-
cialized techniques like the extended tanh-expansion method. This approach is
particularly effective for generating a variety of traveling wave solutions, including
solitary and snoidal waves, and has been applied to equations relevant in nonlinear
optics [7].

For complex problems in solid mechanics, such as nonlinear elastic and plastic de-
formations, meshless methods offer significant advantages. The meshless local
Petrov-Galerkin (MLPG) method provides flexibility in handling intricate geome-
tries and boundary conditions without the need for traditional mesh generation,
proving its utility in solving these nonlinear PDE challenges [8].

Finally, a comprehensive understanding of the performance of different solution
techniques is gained through comparative studies. Research that contrasts ana-
lytical and numerical methods, including the finite difference method, ADM, and
HPM, for nonlinear diffusion equations provides crucial guidance on selecting the
most appropriate method based on accuracy, efficiency, and stability requirements
for specific physical problems [10].

Conclusion

This collection of research explores diverse analytical and numerical methods for
solving nonlinear partial differential equations (PDEs). Key techniques highlighted
include the Adomian decomposition method, variational iteration method, homo-
topy perturbation method, unified solver method, fractional variational iteration
method, spectral collocation methods, Lie symmetry analysis, and meshless local
Petrov-Galerkin methods. These approaches are applied to various physical do-
mains such as fluid dynamics, plasma physics, quantummechanics, solid mechan-
ics, and nonlinear optics. The research emphasizes the development of methods
for finding exact and approximate solutions, improving computational efficiency,
and handling complex equation structures and phenomena like fractional deriva-
tives and traveling waves. Comparative studies are also presented to guide the
selection of appropriate methods for specific problems. The overarching goal is

to provide robust tools for understanding and modeling complex physical systems
governed by nonlinear PDEs.
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