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Introduction
The origin of musculoskeletal impairment might mainly 

result from injury and/or disease. Chronic back pain and arthritis 
(includes osteoarthritis and rheumatoid arthritis) are two common 
musculoskeletal conditions [1-3], associated with functional 
degenerations caused by daily activity and sports-related injury. 
Joint surgery would also cause temporary musculoskeletal conditions 
and often lead to needs of rehabilitation and physical therapy [1]. 
Additionally, several known diseases, such as heart failure [4], stroke 
[2,5-7], Parkinson’s disease [8], osteoporosis [9], and so forth, also 
might lead to the musculoskeletal impairment and the impacts on 
inconvenience of daily life and on lost personal social activities are 
significant [2]. In order to improve the quality of life of the subjects, the 
methodologies of rehabilitation and relevant skills of physical therapy 
are inevitably pursuing. In order to conquer these predicaments, 
several methodologies of rehabilitation and physical therapy have 
revealed fruitful performances for the purpose of recovery of muscle 
strength. Amount these investigations, subject’s activities and locations 
can be detected and recorded by means of wireless sensors network 
[10], personal wearable devices [5,11], radar based technique [12], or 
robotic assistances [12-14], and so forth. To reinforce the recognition of 
morphological variations of human body, those acquired results would 
be fed into relevant dynamic-image-based techniques [6-8,12,14-16] 
for further human posture or gesture recognitions.

The methods of sensor-based assistance reveal merits of portable 
convenience, contactless frame, and low cost [5,10-11]. The human 
activities are detected and recorded by employing accelerometers and 
then acquired analog signals are analyzed using statistical estimations 
[5] or machine learning methods [11]. Thus the mobility and the 
activities of the subjects can be further studied without interventions 
in the duration of data collections. Additionally, the wireless sensors 
network can even record the detailed locations of the subjects. The 
minute variations of gesture or posture, however, are difficult to be 
detected using the proposed sensor-based assistance, thus the robotic 
assistances and the image-based techniques should be employed. The 

advantages of robotic assistance are that the gesture changes can be 
recorded in detail and the employed robotic aids can correctly guide 
the gesture motions [12-14]. Technology of virtual reality provides an 
alternative [6-8] for guiding correct motions of rehabilitation and can 
simultaneously motivate psychological emotions of subjects. However, 
high-budget apparatus, requirement of database, and multi-functional 
hardware operations might possibility reduce the acceptance from 
users. Therefore, the paper proposes a new avenue of approach by 
merging the merits from the sensor-based and the image-based 
techniques.

By employing single accelerometer and methods of machine 
learning, the article proposes a new method for motional pattern 
recognition of various limb postures. Single triple-axis accelerometer 
was set on the wrist of a subject, and time-dependent sequential signals 
were detected and recorded then downlinked to personal smart-phone. 
Data density functional (DDF) method was utilized for estimation of 
data cluster numbers [17], then data centroids and the corresponding 
boundaries were measured using Gaussian mixture model (GMM). 
Thus the swing angles of subject’s limb motions can be further analyzed 
using the combinational machine learning algorithm. Eventually, the 
analyzed results providing from the proposed algorithm will indicate 
corrections of the rehabilitated motions.

Method 
By considering the merits of the sensor-based technique, only one 

triple-axis accelerometer was employed in the study for the subject’s 
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Abstract
The purpose of rehabilitation is to recover the degradation of human body strengths and flexibility caused from 

damaging by disease or injury. Improper posture practices in a long-term rehabilitation, however, might cause 
secondary injuries. To avoid these predicaments, the paper presents a machine learning algorithm for motional 
pattern recognition of various upper limb motions and wrist rotations. The proposed hardware scheme included 
single triple-axis accelerometer and a personal smart device. The accelerometer was setup on subject’s wrists to 
detect and then record the time-dependent sequential signals, and the acquired datasets were downlinked to the 
personal smart devices. The information of time sequence of limb motions was then analyzed using our proposed 
algorithm. The main data cluster numbers were estimated using data density functional method, and locations of data 
centroids were then measured using the Gaussian mixture model. Thus, swing angles of the limb motions can be 
further analyzed using the combinational machine learning algorithm. Under the proposed experimental framework, 
swing angles of the limb motion and wrist rotation can be clearly measured even though the motions of subjects 
were unstable. Then the feedback results fed to the time sequences can assist the posture corrections. Therefore, 
the technique can be used for analyses of accident circumstances and then dangerous alarms. In a nutshell, the 
proposed framework not only provides highly plausibility and objectivity but also reinforces the commercialization.
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comfortability. However, in order to improve the sensitivity and the 
flexibility of the proposed framework, on the contrary to the contactless 
approaches, the accelerometer was set on the wrist of the subjects, 
as shown in Figure 1A. The employed accelerometer was product by 
Laboratory of Translational Research, Institute of Brain Science, and 
National Yang-Ming University, Taiwan. As shown in Figure 1B, the 
critical length of entire accelerometer is only 4 centimeters and its load 
has 7 grams. Acquired analog time-dependent signals will be uploaded 
to either cloud storage or personal smart device by means of XenonBlue 
(Bluetooth 4.0) protocol [18], as illustrated in Figure 1C. The sampling 
rate is up to 50 Hz per axis. Thus, the proposed scheme of hardware 
may match the requirements of convenience and comfortability for 
the purpose of rehabilitation. Eventually, the acquired analog signals 
were analyzed using the proposed DDF method associated with the 
common machine learning method GMM.

To sense and detect the motional patterns of subject’s upper limb, 
the accelerometer was tied on subject’s left wrist in the study. As shown 
in Figure 2, a series of upper limb motions was investigated by detecting 
and recording the changes of swing angles, wherein a reference point 
was set to near subject’s articular cavity. The series of (A), (B), (D) and 
(E) in Figure 2 were used to recognize the changes of swing angles from 
normal upper limb motions, whereas the detected analog signals from 
C and F were also used to compare the different motional patterns 
between the normal motions, error motions introduced in the normal 
motions, and the additional motions from wrist rotations. It is noted 
that the axes of accelerometer, as illustrated using cyan coordinates 
in Figure 1B, ideally would not be changed in the duration of limb 
swing for the convenience of data analysis. However, the motional 
patterns from error motions and wrist rotations of the subject exhibit 
the real circumstances in rehabilitation processes. For the purpose of 
rehabilitation in reality, therefore, these motions should be naturally 
added into the investigation of motional pattern recognitions.

Several popular statistical learning methods can be employed 
for the purpose of motional pattern recognitions in the duration 
of rehabilitation. For instance, the method of convolutional neural 
network (CNN) is often assigned for multi-layer data analysis, especially 
for the applications of two-dimensional biomedical imageries. Since the 
convolution estimation in learning processes is assigned as an encoder 
or a decoder between local information and weighting matrix, the CNN 
method can be used to extract the local connectivity and invariance 
to local transition within signals [19]. Thus CNN method can be 
applied to the fields of image segmentation of biomedical datasets [20], 

pattern recognitions of imageries [21], and so forth. In the other hand, 
the method of recurrent neural network (RNN) provides a route for 
dealing with the sequential information having some specific structural 
cycle connections [19]. Thus, the output sequential signals extracted 
using the RNN method can carry the past information embedded in 
the input sequential datasets [22-24]. Therefore, inspiring by the merits 
of these mentioned deep learning methods, the proposed algorithm 
was built on the foundation of local connectivity and structural cycle 
connections [25].

As shown in Figure 2, the common exercises in the duration of 
rehabilitation are mainly cycling motions. Thus, there should be some 
specific structural cycle connections embedded within the acquired 
sequential signals. Meanwhile, the features hidden in the motional 
patterns could be also extracted by considering the fine structure of 
the local information. However, the computational complexity by 
simultaneously employing these deep learning methods may obstruct 
the possibility of real-time demonstrations. Therefore, under the 
concepts of CNN and RNN methods, we propose a new algorithm by 
combining the DDF method and GMM algorithm. The algorithmic 
flow is illustrated in Figure 3. The DDF method provides a convenience 
to simultaneously measure the data locality and data connectivity by 
respectively considering the localized density functionals [17]:
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The parameter 𝐷 and 𝑁 represent the dimension and length of 
studied system, respectively. Data probability density function (PDF), 
𝜌, can be estimated by means of the employed GMM method or other 
popular PDF estimator. 𝒓′′s listed in Eq. (2) are feature coordinates of 
observation and 𝐫n′s are data points that sampled by GMM algorithm. 
Thus, the most probable data boundaries and cluster number can be 
respectively measured by: 

Figure 1: The appearance of employed accelerometer and the experimental 
scheme. The accelerometer was tied on subject’s wrist as shown in (A). Length 
and weight of the accelerometer were 4 centimeters and 7 grams, respectively. 
The detecting analog signals were uplinked to cloud storage or personal device 
using XenonBlue protocol [18] as shown in (C).

Figure 2: Proposed upper limb motions and wrist rotational motions in the 
experimental scheme. Several combinational scenarios can be used for the 
investigations of motional pattern recognitions: procedures of 45°-, 90°-, and 
180°-swing-angle motions of upper limb swing motions and/or wrist rotational 
motions. Error motions shown in (c) can also be introduced into those motioned 
procedures. 
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the case of 90°-swing-angle, the transform map shown in Figure 5B 
was first used for cluster segmentation. In the analyses of the cluster 
segmentation, the data PDFs in the physical space were estimated using 
GMM algorithm and the results were then fed into DDF method to 
measure the most probable cluster number. Detailed execution of the 
proposed algorithm is illustrated in Figure 3. Once the cluster number 
has been estimated, each centroid of the clusters can be then estimated 
as well as the corresponding data variations. Thus, the corresponding 
swing motional states, as shown in Figure 4, can be well arranged using 
the locations of the centroids and their variation respectively in x- and 
y-directions. In the case of 90° swing angle, the centroids of initial and 
final states were respectively at (33mV, 24mV) and (41mV, 33 mV), 
thus the most probable location of the reference point in the physical 
space was about (33mV, 33mV), as shown in the insertion of Figure 5B.

The location of the reference point was then used in the case of 45° 
swing angle, as illustrate in Figure 5A, to estimate the most probable 
swing angle. In that case, the centroids of initial and final states were 
respectively at (34mV, 24mV) and (39mV, 27mV). The swing angle in 
the case, however, exhibited a offset with a value of 21°, as shown in the 
insertion of Figure 5A. The reason of the exist of undesired offset can 
be deduced to that the mismatch of reference point and the inaccuracy 
of swing angle estimations. The latter should be significantly crucial 
in the studied case. The subject has adequate reference postures in the 
cases of 90°- and even 180° swing angle, as shown in Figure 2D and E, 
but they can only find the final state in the case of 45°-swing-angle by 
means of their experience. Thus, there would be a significant value of 
offset in this studied case.

For further mining the pattern features, the procedure of steps 
(A)-(B)-(D)-(E) and (F) were then respectively used to imitate the 
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Consequently, the adaptive scaling factor is simply the ratio of 
global expectations between the localized functionals [ ]u ρ  and [ ]t ρ .

Analyses and Results
In order to investigate hidden pattern features embedded in various 

swing motions, several different scenarios were adopted to analyze the 
cluster boundaries from their owning analog sequential signals. Figure 
4 illustrates the acquired three-dimensional analog sequential spectra 
detected and recorded by the proposed framework. The procedures 
of steps (A)-(B) and (A)-(B)-(D) illustrated in Figure 2 were used to 
imitate the normal swing motions with swing angles of 45° and 90°, 
and the corresponding analog sequential signals have been respectively 
shown in Figure 4A and B. Because of the rotation axes in these adopted 
procedures were both in z-directions, the acquired analog sequential 
signals in z-direction would not be used for cluster segmentations. It 
should be emphasized that there are three color belts marked in those 
analog sequential signal spectra. These three different colour regions 
were segmented using the proposed machine learning methods. The 
green region indicates the final state of swing motions, in which the 
upper limb of the subject has been swung with a specific swing angle. 
The white region bounded by green and blue belts shows a transient 
region that the upper limb of the subject moved from the initial to the 
final states. The blue region indicates the initial state in which the upper 
limb of the subject was just at the circumstance as shown in Figure 2A. 
Each swing angle was measured from initial to final states with respect 
to the reference point.

The corresponding cluster segmentations of the studied cases in 
Figure 4A and B are shown as in Figure 5A and B, respectively. Since the 
swing axis was set in z-direction in the normal motion studies (Figures 
1B and 2), the analog sequential signals both in x- and y-directions were 
mapped into a physical space, as shown in Figure 5A and B, for further 
analyses using the proposed machine learning methods. Additionally, 
due to the location of the reference point only can be estimated in 

Figure 3: Detailed execution of the proposed combinational machine learning 
algorithm. 

Figure 4: The analog sequential signals of (A) 45°- and (B) 90°-swing-
angle procedures of upper limb swing motions. The different color regions 
respectively represent the final state (green belt), transient state (white belt), 
and initial state (blue belt). 
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normal upper limb and wrist swing motions with angles of 180°. The 
corresponding analyzed results are respectively shown in Figure 5C-
E. The reference point estimated in the case of 90°-swing-angle was 
also used to be that in the case of 180° in upper limb motions, and 
the estimated centroids in the case were respectively (34mV, 24mV) 
and (33mV, 42mV). It is obvious that the transform map as shown in 
Figure 5C reveals a semi-circle as expected. Similar procedure was used 
to estimate the most probable location of the reference point in the 
cases of wrist swing motions. As shown in Figure 5D, the centroids 
of initial and final states were respectively at (32mV, 25mV) and 
(24mV, 34mV), thus the most probable location of reference point 
should be at (32mV, 34mV). The result was then fed into the case of 
180° swing angle of wrist motions to estimate the swing angle, and the 
corresponding transform map shown in Figure 5E illustrated as a semi-
circle as expected.

To investigate the pattern features hidden in the error motions, the 
procedure of step (A)-(B)-(C)-(D) was artificially added into the study 
of motional pattern recognitions. Figure 5F shows the transform map 
with a corresponding cluster segmentation of the employed procedure. 
By comparing the result to the original normal procedure shown in 
Figure 5B, an obvious scattered expansion of data points occurred 
in the region of final states in y-direction, as shown by the arrow in 
Figure 5F. As indicated in Figure 2C, the most moving direction of the 
employed error motion was roughly in the y-axis of the accelerometer. 
Thus, the adopted error motion can easily cause peaks in the analog 
sequential signals of y-direction. Fortunately, the estimated locations of 
centroids in the transform map associated with the error motions were 
similar with that in the normal motions. Therefore, the segmentation 
procedure built in the normal motions is still feasible to the motional 
pattern recognitions with error motions. Figure 6 shows a series of 
arbitrary upper limb swing motions with 90° swing angle procedure, 
including wrist rotations with 180° swing angle. In the first 30 seconds, 
the subject sedulously swung upward faster than that of the normal 
motions, whereas he sedulously swung downward faster in the later 30 
seconds. The segmentation results are as illustrated with the different 
color belts and show the feasibility of the proposed method.

Conclusion
A method for dealing with the problem of motional pattern 

recognition of various limb postures is presented. For the comfortability 
and the feasibility in the duration of rehabilitation, only single 
accelerometer was employed in the motional sensing and detections, in 
which the data streams were downlinked using XenonBlue protocol. In 
order to reduce the computational complexity from the combinational 
deep learning methods, the data density functional method and 
Gaussian mixture model were employed for the cluster segmentation. 
Several combinational motions have been detected and analyzed using 
the proposed hardware and machine learning algorithms. Normal 
upper limb swing motions and pure wrist rotating motions reveal the 
same motional features as shown in their corresponding transform 
maps. The map of error motions exhibits an obvious scattering 
data distribution in some specific direction, and still reveals similar 
motional features as that in the normal studied cases. The most 
probable swing angles in each employed procedure can be estimated by 
simultaneously defining the reference point and measuring the cluster 
centroids in the transform maps. Furthermore, these data features can 
be fed back to original analog sequential signals for the time-dependent 
segmentations. Therefore, the outcomes that have been analyzed using 
the proposed method can directly indicate the user performances and 
accuracy in the duration of rehabilitation using the time sequential 
spectra. Alarms of accident or dangerous circumstances providing by 
the proposed method make it possible for other further applications. 
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