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Introduction
In a wide variety of disciplines it is of great practical importance 

to measure, to describe and compare the shapes of objects. In general 
terms, the shape of an object, data set, or image can be defined as the 
total of all information that is invariant under translation, rotation and 
isotropic rescaling. The field of shape analysis involves hence methods 
for the study of the shape of objects where location, rotation and scale 
can be removed. The two or more dimensional objects are summarized 
according to key points called landmarks. This approach provides an 
objective methodology for classification whereas even today in many 
applications the decision for classifying according to the appearance 
seems at most intuitive.

Statistical shape analysis is concerned with methodology for 
analyzing shapes in the presence of randomness. It is a mathematical 
procedure to get the information of two or more dimensional objects 
with a possible correction of size and position of the object. So objects 
with different size and/or position can be compared with each other 
and classified. To get the shape of an object without information about 
position and size, centralization and standardization procedures are 
used in some metric space.

Interest in shape analysis began in 1977. Kendall published [1] a 
note in which he introduced a new representation of shapes as elements 
of complex projective spaces. Mardia on the other hand investigated 
the distribution of the shapes of triangles generated by certain point 
processes, and in particular considered whether towns in a plain are 
spread regularly with equal distances between close towns.

The full details of this elegant theory which contains interesting 
areas of research for both probabilists and statisticians where published 
by Kendall and Bookstein [1]. The details of the theory and further 
developments can be found in the textbooks [1,2].

Neural Network 
Neural networks have been developed originally in order to 

understand the cognitive processes. Nowadays there are a lot of 
applications of neural networks as a mathematical method in quite 
different disciplines.

The term “neural networks” points to the model of a nerve cell, the 
neuron, and the cognitive processes carried and driven by the network 
of interacting neurons. A neuron perceives chemical and physical 
excitement from the environment by its dendrites. The neuron is 

processing this incoming data and sending the information to other 
neurons via axon and synapses.

McCulloch and Pitts implemented the biological processes of 
a nerve cell for the first time in the mathematical way. Nerve cells 
have to access and process incoming data in order to evaluate target 
information. Therefore the corresponding neural networks are called 
supervised neural networks. An unsupervised neural network has no 
target and is similar to a cluster algorithm.

The data consists of n variables 1,... nx x on binary scale. For data 
processing, the i’th variable ix is weighted with iw . Normalized with

i| w | 1≤ the multiplication of ix  with iw determines the relevance of 

ix  for a target . The value y iw reflects the correlation between the 
input variable and the target, the sign indicating the direction of the 
influence of the input variable on the target. Weighting the input 
variables for a target variables is similar to discriminant analysis [3].

The critical quantity for the neuron is the weighted sum of input 
variables
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For the target y with binary scale, a threshold S is needed. Crossing 
the threshold yields 1 and falling below the threshold yields 0. Hence 
the activation function F can be written as 
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In comparison to discriminant analysis, for neural networks the 
threshold S has to be assigned, depending on properties of the target; it 
cannot be derived from the data in a straightforward manner. Neural 
networks usually include no assumption about the data. Rather they 
are a numerical method [4]. 
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Abstract
This paper is devoted to calculating the oil spot spreading in the sea by means of neural networks. Here the 

problem is found out oil spot spreading in the sea after some real times and we can determine the process with the 
neural networks.
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With the input of the activation function, we obtain y=F(q) as 
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To simulate all logical more than one layer is necessary.

Multi-layer Perceptrons 
In general a given target may be reached only up to a certain error. 

Given a certain measure ˆ(y, y)E  for the distance between the given 
target state y and the state f computed by the neural network, learning of 
the neural network corresponds to minimization of ˆ(y, y)E . The following 
training algorithm is inspired by Rumelhart, Hinton and Williams. The 
total error measure over all states of a given layer is defined as 
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Different kind of error measurements suited for the application can 
be applied. The upper error measurement will be used below to reset 
the weight in each layer of the neural network. 

For simplicity, we consider now a 2-layer perceptron network, 
which also will be sufficient bellow for our purpose of calibrating the 
stochastic process. 

The processed state ŷ  of the neural network is computed by the 
following steps. First the critical parameter for the first layer is computed 

from n weighted input values as 
1

N

i i
i

w x
=
∑  we consider a hidden output 

layer with m neurons. For n let gj be the activation function of the j-th 
neuron of the hidden layer with an activation value of h j given as
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Usually for all neurons of a given layer common activation 
function g={g1,….gm}, e.g. a sigmoid function, is used. Alternatively for 
simulating cyclical processes trigonometric function can be applied. 
This would be the case, if we assume that the same input value in 
combination with the time point has to be interpreted contrary. Next, 
the output of the previous (hidden) layer becomes the input of the next 
layer, and the activation proceeds analogously to the previous layer.

Let f be the activation function of the pre-final (here the second) 
output layer. Then the pre-final critical value is 
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Finally, the pre-final critical value q is interpreted by a final 
activation function F yielding 

ˆ (q)y F=                                                                                                  (6)

As a final state value computed from the neural network with the 
given weight of the input variables from input and hidden layers.

Now the neural network performs a training step by modifying 
the weight of all input layers. The learning mechanism the weights are 
determined by the target distance measure (3) he weights of both layers 
are changed according to the steepest descent, i.e.
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With a learning rate α  which should be adapted to the data, the 
weights are changed as follows:

new old
i i iw w w Eα= − ∇                                                                          (9)

new old
i i iu u u Eα= − ∇                                                                        (10)

Method of Solution 
The necessary number of iterations depends on the requirements 

posed by the data, the user, and the discipline [5].

Instead of the error function, we are using the variance. We try to 
find an optimal variance for differentiating our groups.

Spreading of the oil spot in the sea and enlarge it, is harmful for 
sea animals and natural Geographic, to this reason and according to 
research it's very necessary to find out the size of spreading and can 
intercept or arrest it (Figures 1 and 2) [6].

The weather condition, gale energy, sun refulgence, water density 

Figure 1: Spreading of oil.

 

Figure 2: Oil slick.
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and water clarity is very important parameters in oil spreading, but we 
want to solve the problem by neural networks without these problems.

We have so many methods to estimating the future of some things 
or process in different science, but also we know that the results of each 
method is different with another method and all of the results not really 
correct, results are closer to target.

Same we show in Figures 1 and 2, in our method first we 
determined 200 different points in outside circumference of oil spot, 
that these points are very close together, then get the all longitudes and 
latitudes of these points, and register these. We register new longitudes 
and latitudes of those points at each 6 hours on 5 sequential days, after 
5 days we have new 20 longitudes and 20 latitudes for each point, then 
we input continual all 5 days data to the our neural network (Figure 3).

Results 
Neural network features 

1. non linear modeling capability 

2. generic modeling capability 

3. robustness to noisy data 

4. ability for dynamic learning 

5. requires availability of high density of data 

Neural network modeling shows excellent promises for local 
forecasting of water levels, computationally and financially inexpensive 
method. 

The quality of the wind forecasts will likely be the limiting factor for 
the accuracy of the water level forecasts (Figure 4).

First use historical time series of previous water levels, winds, 
barometric pressure as input then train neural network to associate 
changes in inputs and future water level changes after that make water 
level forecasts using a static neural network model (Figure 5). 

Neural network modeling started in the 60's then key innovatation 
in the late 80's:backpropagation learning algorithms after that number 
of applications has grown rapidly in the 90's especially financial 
applications and then growing number of publications presenting 
environmentals (Figures 6 and 7).

Conclusion 
In our learning algorithm we use previous data to estimate next 

data (like Fibonacci method). Now a day we begin to input all of data 
(5 day’s data) to network and according to our learning algorithm, this 
network give us the new longitudes and latitudes of those points on 6’th 
day (output) [7].
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Figure 3: 5 days data to the our neural network.

 

Repeated Presentation of data

Adjust
Weights

Output         Error

Desired

1 0 0

0 1 0

1 1 0 0

1 0 1 0

Neural
Network

0 1 1 0      0 1 1 0

+

∑

Figure 4: Factor for the accuracy of the water level forecasts.

 

Figure 5: Neural network forecasting of water levels.

 

Figure 6: Number of applications has grown rapidly in the 90's.
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The points longitudes and latitudes on 6’th day, show us the 
estimating result of oil spot spreading (enlargement size) in the sea, 
that we can find it by means of neural network without using any 
human or other way.

But the best result of this network is, find out the estimating result 
of enlargement size on 9'th day without calculating results of 6'th, 7'th 
and 8'th days.
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Figure 7: Financial applications.

Note that using the results of [8,9] we can apply this technique to 
other practical problems.
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