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Introduction
Count data can be found in a variety of sectors, including biology, 

healthcare, psychology, marketing, and others. The distribution of count 
data is non-negative and naturally heteroskedastic, with a right-skewed 
variance that rises with the mean [1]. Classical Poisson regression is the 
most widely used technique for modeling count data, but as it relies on 
the premise that the variance and mean are equally distributed, it cannot 
be used in many real-world situations where the data are dispersed (i.e. 
the variance is greater than or less than the mean). Dispersion frequently 
happens for a variety of causes, such as systems that produce an excessive 
number of zero counts or censoring. This excess variation can lead to 
inaccurate conclusions concerning parameter estimates, confidence 
intervals, standard errors, and tests. Generalized Linear Models (GLMs) 
and expansions are commonly utilized to assess these counts [2] that 
measure the impact of predictor variables on anticipated counts. These 
kinds of count data are frequently modeled with fundamental statistical 
models such as Poisson or negative binomial distributions utilizing 
GLMs and GLMMs. When a Poisson model’s variance exceeds its mean, 
the model is said to be over dispersed (mean<variance) [3,4]. Although 
it becomes inappropriate for the majority of count data analysis. There 
are numerous ways to account for Poisson over dispersion. One popular 
technique is Negative Binomial (NB) regression, which has been effectively 
used to understand over dispersed counts in statistics. Another lesser-
known regression can be modeled, Conway-Maxwell Poisson distribution 
(CMP) [5,6]. When data having either over dispersion or under dispersion. 

In addition to including the Bernoulli and geometric distributions as special 
instances, the Conway Maxwell-Poisson distribution is a two-parameter 
generalization of the Poisson distribution that relies on the dispersion 
value [7]. If statistical models do not account for over and under-dispersion, 
it may result in some bias in the calculation of the variance of parameter 
estimates, goodness-of-fit, and Information Criteria (IC).

We investigate the performance of the COM-Poisson regression 
against a few other regression models: Poisson, negative binomial, and 
generalized Poisson using COVID-19 death data to demonstrate its utility 
in real-world applications. However, a recent study examined the impacts of 
some meteorological variables on COVID-19 mortality using only negative 
binomial and quasi poisson regression analysis and both results were 
significant [8]. A new R package namely glmmTMB is introduced in 9 that 
can swiftly estimate a wide range of models, such as GLMs, GLMMs, hurdle 
models, and extensions. The most appealing feature is the combination of 
fastness and flexibility to any other GLMMs. Another distinct characteristic 
of glmmTMB is its capability to calculate the mean-parameterized Conway-
Maxwell-Poisson distribution [9].

The goals of this research are to provide an introduction to proper 
regression modeling for dispersed count data with maximum statistical 
power and to demonstrate the validity of our modeling. We conducted a 
case study utilizing the daily COVID-19 death number in Bangladesh. This 
paper is outlined as follows. Section 2 provides a brief overview of negative 
binomial, generalized Poisson, and Conway Maxwell-Poisson regression. 
Section 3 contains the regression modeling for the dataset of all of the 
aforementioned regression models with comparisons and the general 
discussion, and finally, section 4 concludes the manuscript’s conclusions.

Materials and Methods
Negative binomial regression

The negative binomial regression model is built on the Poisson-gamma 
mixed distribution. The Poisson distribution can be made more general by 
including a gamma noise variable, where the scale parameter is ν and the 
mean of 1 is included. The negative binomial distribution with p.m.f
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Where λi= ti λ and the dispersion parameter α= ϑ−1

The parameter λ represents the mean incidence rate of response 
variable y, and it can be used to illustrate the possibility of a repeat of the 
incident during a specific exposure period t. The mean is 

NB regressions transform to Poisson regression in the limit as α→0, 
and indicate overdispersion when α>0. The negative binomial regression 
model is expressed as the following form 

The regression coefficients β0,β1,…,βp are unknown parameters of a 
set of p repressors that are estimated from a set of data.

Generalized poison regression

The Poisson model is good for modeling discrete counts of events that 
happen in a fixed space or time interval. The Poisson model is especially 
useful in situations where counts are right-skewed and thus cannot be 
reasonably approximated by a normal model. The generalized poison 
model is appropriate when the observation is over-dispersed [10,11]. The 
pmf of GP distribution can be defined as:

Where, Yi=0,1,2,… is the random variable, y is count; ϑ is dispersion 
parameter, 0 ≤ ϑ<1; λ is the rate parameter, λ>0 [12]. The mean of the 
GP distribution is λ/(1− ϑ), and variance is λ/(1− ϑ)2. When ϑ=0 the GP 
distribution is reduced to the standard Poisson distribution with mean λ. 
GP regression reduces to Poisson regression when ϑ=0, indicate over 
dispersion when ϑ>0 (α>0) and under dispersion when ϑ<0 (α<0) [13]. 
The log-likelihood function (LF) of GP regression is given by [14]:

Where μi= (1−ϑ) exp (xiβ) and λ (µ) is the solution of the preceding 
equation for the mean. The maximum likelihood estimates can be obtained 
by maximizing the log-likelihood. Established a generalized poisson 
distribution that is more flexible in modeling over dispersion than the 
Poisson distribution. However, it does not belong to the exponential family, 
sometimes making analysis more difficult.

Conway Maxwell poison regression

The Conway-Maxwell-Poisson distribution is a two-parameter 
extension of the Poisson distribution that generalizes the Poisson, 
binomial, and negative binomial discrete distributions, introduced by 
Conway and Maxwell [15] in the context of queuing systems. It’s useful 
statistical and probabilistic properties are elegantly derived [16,17]. Its 
probability function can be defined as.

For λ>0 and ϑ ≥ 0. The addition of the scale parameter ϑ enables the 
ratio (P(Z=j-1))/(P(Z=j))to increase either sub or super-linearly and allows 
Z to have a variance that is either less than or larger than its mean 16 (the 
mean of Z ∼ CMP (λ, ϑ). With parameter nλ, the CMP approaches an 
ordinary Poisson distribution, as ϑ=1 (thus Z (λ, ϑ)=exp (λ)). Less than 
one value of ϑ corresponds to successive ratios that are flatter than the 
Poisson distribution, hence too long tails or over dispersion.

The mean is used to parameterize the Conway-Maxwell-Poisson 
distribution (family=compois) [18]. To estimate the parameter of CMP 7 
showed three methods including the maximum likelihood estimator using 
iteration (more computationally intensive) and the Bayesian method using 

conjugate prior, the posterior density of the parameters. For ϑ ≤ 1 or λ>10ϑ, 
the mean value and variance of CMP distribution are

It is worth noting that the useful result for this distribution is E (Yϑ)=λ. 
The relationship between these two moments can be rewritten as

For n independent and identically distributed observations y1y2,…, yn 
the log-likelihood is given by

CMP is a versatile distribution that can account for overdispersion and 
underdispersion, both of which are common in count data. It is also easy 
to use, flexible and performs well in many settings. The advantages with 
useful several applications (such as in marketing, online auctions, etc) of 
using the COM-Poisson distribution are illustrated [19,20].

Case study: COVID-19 death data

Information on COVID-19 cases is taken from the daily reports of the 
Institute of Epidemiology Disease Control and Research (IEDCR), Dhaka, 
Bangladesh, from March 8, 2020, to April 30, 2022. Data are accessed from 
the website. The daily temperature (measured in °C) and humidity (%) of 
Bangladesh are collected from the link.

Testing for variable dispersion

Sellers and Shmueli developed a hypothesis testing approach to 
detect whether there is considerable data dispersion, demonstrating the 
importance of a COM-Poisson regression model over a standard poisson 
regression model. It can be performed by Likelihood Ratio Test (LRT), H0: 
ϑ=0 vs. H1: ϑ≠ 0. The critical value of the chi-square distribution with a 
significance level of 2α is used to examine the null hypothesis at the α level 
of significance. When the LRT value is greater than the chi-square critical 
value, the null hypothesis is rejected.

LRT=2(lnL1 −lnL0).

Where lnL1 and lnL0 are the models’ log-likelihood under their respective 
hypotheses.

Akaike Information Criteria (AIC)

When comparing the performance of different models, one can use 
a variety of likelihood metrics that have been put forth in the statistical 
literature. AIC is one of the most widely used metrics. A model with more 
parameters was penalized by the AIC, which is defined as

AIC=2K-2lnL

Where K is the number of independent variables used and L is the log-
likelihood estimate. A low AIC value is advantageous for the fitted model.

Results and Discussion
Numerical illustration
Descriptive analysis:  As of 8 March 2022 to 30 April 2022, a total of 

27514 cases of deaths were officially reported in Bangladesh. This data 
indicates a positive link between mortality and the daily peak temperatures 
(person’s r=0.228) and humidity (person’s r=0.295). Table 1 summarizes 
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the descriptive statistics of the number of COVID-19 deaths and the climatic 
parameters for 764 days. We used a histogram of the observed count 
frequencies to get a preliminary understanding of the dependent variable.

Statistics Number of death Temperature Humidity

Mean 36.013 49.988 30.307 63.679

SD 3.831 16.3

Median 23 31 65

Skewness 2.859 -0.834 -0.175

1Q 7 28 52

3Q 38,00 33 75

Min 0 10 21

Max 267 37 100
Table 1. Descriptive statistics of number of daily COVID-19 death and 

meteorological factors (temperature and humidity).

While the humidity and temperature on average are 30.30°C and 
63.67%, respectively, the average daily confirmed death rate from COVID-19 
is about 36. The maximum temperature recorded during this pandemic time 
was 37°C, while the minimum temperature was 21% whereas the highest 
humidity recorded was 100%.

The number of deaths brought on by COVID-19 is represented by a 
histogram and a kernel density plot in Figure 1. It indicates that one of the 
best probability models for this variable is the bell-shaped distribution since 
it shows that the number of deaths caused by COVID-19 appears to be 
distributed symmetrically. Although it shows that the total number of deaths 
linked to COVID-19 has a distributional form that approaches a skewed 
pattern, it implies that an uneven distribution would be better suitable for 
predicting the values of this variable.

 Figure 1.  Distribution of the number daily of death due to COVID-19, 
during the period March 2020-April 2022.

Figure 2 depicts the scatter plot of the daily number of COVID-19-
related deaths against daily temperature, humidity, and time for the time 
period from March 8, 2020, to April 30, 2022. The response variable and 
the explanatory variables have an obvious non-linear relationship. These 
graphs also illustrate a relationship between the experimental variable and 
covariates.

Figure 2 . Scatter diagram (a). The daily number of death due to COVID-19 vs. daily 
temperature; (b). The daily number of death due to COVID-19 vs. daily humidity; 
(c) The daily number of death due to COVID-19 vs. time during the period March

2020-April 2022.

Regression model fitting and selection:  With Poisson, Conway-

Maxwell-Poisson, and negative binomial distributions on the conditional 
model, we fitted GLMMs to the COVID-19 death data and chose the best 
model. The Conway-Maxwell-Poisson GLMM, which enabled counts to 
fluctuate with temperature and humidity, was the most cost-effective model 
we looked at. We offer the summary from more complex models in Table 2 
to illustrate the additional output from dispersion models.

GlmmTMB

Coefficient Poisson NB GP CMP

Intercept -1.948 (0.073) 1.414 (0.336) 1.856 (0.326) -0.654 (0.304)

Temperature 0.113 (0.001) 0.044 (0.009) 0.0360 (0.008) 0.080 (0.009)

Humidity 0.029 (0.001) 0.012 (0.001) 0.009 (0.001) 0.025 (0.002)

Dispersion - 46.80 82.40  3.53 × 109

Deviance 30027.5 6911.2 7008.7 6810.7

AIC 30033.5 6919.2 7016.7 6818.7

BIC 30047.4 6937.8 7035.2 6837.3

Note:  The numbers in the parentheses are the standard errors.

Table 2. Summary value for poisson, NB, GP and CMP regression models 
in glmm TMB for over-dispersed counts of COVID-19 death data in 

Bangladesh.

The interpretation of coefficients is clearer for the CMP model. 
After dividing the COM-Poisson coefficients by ν dispersion parameter 
(0.025/3.53 × 109=7.0821), the results in Table 2 point out that the regression 
parameters for all models have almost similar estimates in terms of the 
coefficient magnitudes. The estimated dispersion parameter for COM-
Poisson model is ϑ=3.53 × 109, indicating severe over-dispersion, so we 
can use the approximation

 =-0.654+0.080×temperature+0.025 × Where   is given by: 
humidity

A hypothesis test developed by Sellers and Shmueli is used to determine 
if the dispersion parameter is significant or not 17 are used. Since the p 
value is nearly zero, dispersion is present, necessitating a CMP regression 
as opposed to a poisson regression.

Model comparison using information criteria: We may compare 
all GLMMs, using AIC values. The AIC calculates the model’s relative 
information value based on the highest likelihood estimate and the number 
of parameters (independent variables) in the model. We output the table 
for the working models here. The most parsimonious model feature is 
the Conway-Maxwell-Poisson distribution with temperature and humidity 
influences. From Table 3, it is obvious that CMP better fits the model having 
the smaller AIC value. AIC score variance between the CMP model and 
the other models under comparison. The third-best model in this Table 3 
has a delta-AIC of 197.91 compared to the top model, while the next-best 
model has a delta-AIC of 100.46 compared to the top model. Additionally, in 
this instance, 100% of the entire AICc weight is included in the cumulative 
weight of the top two models.

Model k AICc dAIC AICc Wt Cum. Wt LL

CMP 4 6818.8 0 0 1 -3405.37

NB 4 6919.26 100.46 0 1 -3455.6

GP 4 7016.71 197.91 0 1 -3504.33

Poisson 3 30033.5 23214.7 0 1 -15013.7

Table 3. Model selection based on AICc.
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Conclusion
The use of discrete distributions to fit discrete data is rare in practice. 

The Poisson distribution is the most popular, and the negative binomial 
distribution is frequently employed with over dispersed data. Variations 
are created when none of the existing distributions seem acceptable. In 
this way, the Conway Maxwell Poisson (CMP) distribution broadens the 
selection of discrete distributions available for data modeling. The response 
variable of interest in this study is a count, meaning it accepts nonnegative 
integer values. The most used regression model for count data is poisson 
regression. The equidispersion assumption limits poisson regression. The 
employment of heneralized Poisson and negative binomial regression is a 
typical solution when data exhibit over-dispersion. In recent years, CMP 
regression has been utilized to fit distributed data. Generalized Poisson, NB, 
and CMP regression models are fitted, respectively, to estimate the impact 
of temperature and humidity on the number of daily deaths. The findings 
showed that all models’ regression parameters had similar estimates, and 
generalized and NB models had lesser ratios than Poisson models. Both 
over dispersion tests showed that NB and COM-Poisson regression were 
superior to the Poisson model in terms of accuracy. The COM-Poisson has 
the best-matching terms of log-likelihood and AIC. Based on the results 
it is obvious that CMP regression provides more accurate results which 
support its superiority in this context with statistical evidence. Although it is 
remarkable that a long-forgotten distribution has been revived, we believe 
that our analysis of its statistical use sheds light on the beauty and use of 
the CMP distribution. We use a modern method that combines theory and 
numerical methods to investigate the CMP distribution and other discrete 
distributions. Only because of today’s more advanced computer power was 
this made possible. 
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