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MDR1 promoter methylation is frequent in prostate carcinoma 
where MDR1 downregulation is mainly due to histone post-
translational modifications. This occurs concomitantly with aberrant 
promoter methylation, substantiating the association with decreased 
expression of P-gp. Histone active marks H3Ac, H3K4me2, H3K4me3, 
H3K9Ac, and H4Ac are increased at the MDR1 promoter after exposure 
to trichostatin A alone or combined with 5-aza-2'deoxycytidine [10].

RASSF10 is located on chromosome 11p15.2, a region that shows 
frequent loss of heterozygosity (LOH) in several cancer types. RASSF10 
suppresses colorectal cancer growth by activating P53 signaling. 
RASSF10 is methylated in 82.6% of human primary hepatocellular 
carcinoma cells (HCC) and methylation of RASSF10 is associated 
with tumor size and TNM stage. Restoration of RASSF10 expression 
suppresses cell proliferation, induces apoptosis and G2/M phase arrest, 
sensitizes cells to docetaxel, and activates P53 signaling in HepG2 and 
QGY7703 cells [11]. 

Bromodomain and extra-terminal (BET) domain proteins have 
emerged as promising therapeutic targets in cancer. BET inhibitors 
directly target bromodomain proteins that bind acetylated chromatin 
marks. Resistance to I-BET, the prototypal BET inhibitor, confers cross-
resistance to chemically distinct BET inhibitors such as JQ1, as well as 
resistance to genetic knockdown of BET proteins. Chromatin-bound 
BRD4 is globally reduced in resistant cells, whereas the expression 
of key target genes remains unaltered, highlighting the existence 
of alternative mechanisms to regulate transcription. Resistance to 
BET inhibitors is in part a consequence of increased Wnt/β-catenin 
signaling, and negative regulation of this pathway results in restoration 
of sensitivity to I-BET [12]. 

Despite alteration of DNA methylation or histone modifications, 
deregulated miRNA expression patterns of tumor cells have been 
identified as interfering with drug response [13]. Efflux pumps of the 
ABC transporter family are subject to miRNA-mediated gene regulation. 
ABC transporters are embedded in a concerted and miRNA-guided 
network of concurrently regulated proteins that mediate altered drug 
transport and cell survival under changing environmental conditions. 
miR-27a, miR-137, miR-145, miR-200c, miR-298, miR-331-5p, miR-
451, and miR-1253 are associated with reduced ABCB1 expression, 
and miR-27a, miR-138, miR-296, and miR-451 are associated with 
increased ABCB1 expression [14]. 

The bladder cancer (BCa) cell line 5637 is significantly more 

Drug resistance is an important concern in practical medicine, 
with special relevance in cancer (chemotherapy resistance). Although 
the molecular mechanisms of drug resistance are still obscure, there 
is evidence that genetic variation in pathogenic, metabolic, and 
transporter genes, under the influence of epigenetic events (DNA 
methylation, chromatin/histone remodeling, miRNA dysregulation), 
may contribute to drug resistance. Three types of drug efflux pumps, the 
multidrug resistance gene 1 (MDR1/ABCB1)-encoded P glycoprotein, 
the multidrug resistance-associated protein (MRP/ABCC1) and breast 
cancer resistance protein (BCRP/ABCG2) may play an important part 
in the intrinsic or acquired defense of cells against drugs. Multidrug 
resistance is often associated with an ATP-dependent decrease in 
cellular drug accumulation which is attributed to the overexpression of 
ABC transporter proteins [1,2].

SNPs of the ABCB1 (T1236C, G2677T/A and C3435T) and two 
SNPs of the ABCG2 (G34A and C421A) genes influence resistance 
and/or good response to imatinib mesylate (IM) in chronic myeloid 
leukemia (CML) treatment. The frequency distribution of ABCG2 421 
CC, CA and AA genotypes are different between IM good responders 
and resistant patients. Resistance is associated with patients who are 
homozygous for the ABCB1 1236 CC genotype. For ABCB1 G2677T/A 
polymorphism, a better complete cytogenetic remission is observed 
in patients with the TT/AT/AA variant. The ABCB1 haplotype 
C1236G2677C3435 is linked to a higher risk of IM resistance, while 
the ABCG2 diplotype A34A421 correlates with a good response to IM. 
ABCG2 421C>A is associated with a major molecular response and 
ABCB1 2677G>T/A is associated with a lower molecular response [3]. 
SLC22A1-ABCB1 haplotypes may also influence IM pharmacokinetics 
in Asian CML patients [4].  

Epigenetic modifications are associated with drug resistance 
[5]. The acquisition of drug resistance is tightly regulated by post-
transcriptional regulators such as RNA-binding proteins (RBPs) and 
miRNAs, which change the stability and translation of mRNA-encoding 
factors involved in cell survival, proliferation, epithelial-mesenchymal 
transition, and drug metabolism [6]. Increased ABCB1 transcript 
expression coincident with acquisition of resistance to epirubicin or 
paclitaxel was temporally associated with hypomethylation of the ABCB1 
downstream promoter in the absence of gene amplifications or changes 
in mRNA stability. Changes in ABCB1 promoter methylation, ABCB1 
promoter usage and ABCB1 transcript expression can be temporally 
and causally correlated with the acquisition of drug resistance in breast 
tumor cells [7]. About two-thirds of all breast cancers are ERα-positive 
and can be treated with the antiestrogen tamoxifen, and over 30% 
of women treated with tamoxifen develop drug resistance. Aberrant 
DNA methylation, together with other pharmacogenetic factors [8], 
is thought to play a role in this resistance [9]. ERα-positive TMX2-
11-resistant cells have 4,000 hypermethylated sites and ERα-negative
TMX2-28-resistant cells have over 33,000. The tamoxifen-resistant
cell lines share 3,000 hypermethylated and 200 hypomethylated CpGs.
The ZNF350 and MAGED1 genes are hypermethylated, and treatment
with 5-aza-2'deoxycitidine causes a significant reduction in promoter
methylation and a corresponding increase in expression in TMX2-28
[9].
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sensitive to the cytotoxicity of five chemotherapeutic agents than H-bc 
cells. The inhibitor of growth 5 (ING5) gene is upregulated in 5637 
cells compared with H-bc cells, indicating that it has an inhibitory 
role in BCa chemoresistance. SiRNA-mediated inhibition of ING5 
increases the chemoresistance and inhibits the DNA damage response 
pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 
decreases the chemoresistance and activates the DNA damage response 
pathway in H-bc cells. ING5 gene expression is inhibited by miR-193a-
3p and is instrumental in the role of miR-193a-3p in activating BCa 
chemoresistance [15].

Lung cancer cells show inherent and acquired resistance to 
chemotherapy. The level of HDACs 1, 2, 3 and 4, DNA methyltransferase, 
acetylated H2B and acetylated H3 are lower in A549DOX11 
(doxorubicin-resistant) compared to A549 lung adenocarcinoma cell 
lines. Fourteen miRNAs are dysregulated in A549DOX11 cells; of these 
14 miRNAs, 4 (has-mir-1973, 494, 4286 and 29b-3p) show a 2.99-
4.44-fold increase in their expression. This is associated with reduced 
apoptosis and higher resistance of A549DOX11 cells to doxorubicin 
and etoposide [16]. 

The oncogenic isoform of HER2, HER2Δ16, is expressed with 
HER2 in nearly 50% of HER2-positive breast tumors where HER2Δ16 
drives metastasis and resistance to multiple therapeutic interventions 
including tamoxifen and trastuzumab. Expression of HER2Δ16 
oncogene alters expression of 16 microRNAs (especially, miR-7 tumor 
suppressor) to promote endocrine resistance [17]. 123 differentially-
expressed miRNAs were identified in the cells resistant to vinorelbine 
(NVB). MAPK, mTOR, Wnt, and TGF-beta signaling pathways and 
several target genes such as CCND1, GRB2 and NT5E may associate 
with drug resistance of breast cancer cells to NVB [18]. 

Expression of miR-520g is correlated with drug resistance of colon 
cancer cells. Ectopic expression of miR-520g confers resistance to 
5-fluorouracil (5-FU) - or oxaliplatin-induced apoptosis and reduces 
the effectiveness of 5-FU in the inhibition of tumor growth. Changes 
in circulating miRNA-126 during treatment are related to the response 
to chemotherapy and bevacizumab in patients with CRC. miR-203 
enhances 5-fluorouracil chemosensitivity via the downregulation of 
TYMS in colorectal cancer. miR-320 expression level is found to be 
down-regulated in human colon cancer. The oncogene FOXM1 is a 
direct target of miR-320. miR-320 and FOXM1 protein have a negative 
correlation in colon cancer tissues and adjacent normal tissues. miR-
320-FOXM1 axis may overcome chemoresistance of colon cancer cells 
[19].

miR-16 is downregulated in paclitaxel-resistant lung cancer cells. 
It is also the target of the anti-apoptotic protein Bcl-2 in paclitaxel-
resistant lung cancer cells. The combined overexpression of miR-16 
and miR-17 and subsequent paclitaxel treatment greatly sensitizes 
paclitaxel-resistant lung cancer cells to paclitaxel by inducing 
apoptosis via caspase-3-mediated pathway. The loss of miR-199b-5p 
due to progressive epigenetic silencing leads to the activation of the 
JAG1-mediated Notch1 signaling cascade, thereby leading to the 
development of acquired chemoresistance in ovarian cancer. miR-
199b-5p is downregulated in cisplatin-resistant ovarian cancer cells 
and is clinically associated with advanced and poor survival ovarian 
cancers. The promoter region of miR-199b-5p is hypermethylated, 
and the loss of miR-199b-5p can be restored by 5-Aza-dC-mediated 
demethylation. JAG1 is a primary target of miR-199b-5p [20].  

These examples illustrate the complexity of the metabolomics of 
drug resistance in different cancer cells and the potential influence that 

epigenetic intervention may provide as a future anti-cancer strategy 
[21,22].
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