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Abstract

Risk factors that define the metabolic syndrome (MetS) develop with age increasing its prevalence. Therefore,
MetS can be considered an age-related health problem. Mechanism involved in aging and MetS are incompletely
understood. The goal of this review is to highlight novel molecular maladaptive mechanism that tiger cardiac disease
and common in aging and MetS. We focus on mitochondrial energetic function as well as mitochondrial calcium
handling. In addition, we analyzed the role of O-GlcNAcylation which is a posttranslational modification that triggers
multiple signaling pathways.
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Introduction
Metabolic syndrome (MetS) is an arrangement of cardiovascular

and metabolic risk factors that dramatically increase cardiovascular
mortality and morbidity and type 2 diabetes [1-3]. MetS is a growing
public health problem worldwide. The magnitude of the prevalence of
MetS also signals to the complexity of the problem.

MetS is characterized by central obesity, dyslipidemia, compromised
fasting glucose, and hypertension [4]. However, the pathophysiologic
mechanisms that lead to MetS are incompletely understood.

The prevalence of MetS increases with age with cardiovascular
disease being the most frequent outcome. Therefore, MetS can be
considered an age-related disease.

Only after decades of intense research efforts worldwide we have
identified important molecular targets of the aging process that lead to
cardiovascular disease. We only describe some novel discoveries at the
molecular level that revealed new therapeutic targets that have not
been investigated.

Aging and decreased cardiac function
The process of general aging-related changes in model organisms

has been explored recently [5-7]. The rate of aging is a controlled
process governed by epigenetic pathways and biochemical processes
which are conserved in evolution [6]. Aging is generally characterized
by progressively impaired organ function and an increased propensity
to death. This process indeed occurs in the heart. Of special relevance
is that aging causes dysregulation of nutrient sensing, with abnormal
metabolism and mitochondrial (Mito) dysfunction [5-7]. Though
some studies have suggested that Reactive Oxygen Species (ROS)
production may be implicated in the aging process, the role of ROS as
a primary cause of cellular senescence has also been questioned [6,8].
Beyond these general concepts, it is clear that humans older than 65
years have an increased propensity for heart failure (HF) (e.g. 11/1000

persons) and that HF is enhanced further with increased age (e.g.
43/1000 in humans >80 years old) [9,10]. MetS further worsen these
data. This is relevant since HF is always associated with recurrent
hospitalization, decreased quality of life and a reduction in life span
[11].

Alterations contributing to aging-related decreases in cardiac
and Mito energetic function
The heart is a highly active metabolic organ which is very rich in

Mito [12] and therefore susceptible to decreased Mito energetic
function. Several converging mechanisms contribute to decreased Mito
function with aging, including decreased Mito biogenesis, decreased
Mito quality and decreased energetic function of Mito normalized for
Mito quantity [6,13,14]. Some reports find no significant changes [14]
and others find decreases in the function of specific Mito complexes
and increased ROS production [13,15].

Mito Ca2+ handling, [Ca2+] m and Mito energetic function
Mito free calcium concentration ([Ca2+]m) is an important

signaling mechanism for Mito energetic activity by enhancing the
activity of oxidative phosphorylation, especially complex III, and the
Vmax of Complex V [16]. In addition, several dehydrogenases in the
Mito matrix are activated by [Ca2+]m including the Pyruvate
Dehydrogenase Complex (PDC) which is the key enzyme for glucose
oxidation (GOX) [17]. There are limited findings reported regarding
aging-related changes in substrate consumption. A positron emission-
based approach was used to show that myocardial glucose utilization
could be stimulated by dobutamine, only in youn, but not old hearts
[18]. Without an adequate compensatory increase in glucose utilization
and GOX, a decrease in high-energy phosphate generation will prevail
in the aging heart.

[Ca2+]m is controlled by a complex set of mechanisms influencing
Mito matrix Ca2+ uptake and release which have been reviewed
[19,20]. Briefly, the outer Mito membrane (OMM) is quite Ca2+-
permeable [21], but import across the inner Mito membrane (IMM) is
highly regulated. The most important contributor to Mito Ca2+ uptake
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is the mitochondrial calcium uniporter complex (MCUC) with the
MCU serving as a highly selective channel that moves Ca2+ ions across
the IMM dependent on Mito membrane potential (ΔΨm). Recently,
integrative genomics methods enabled the discovery of the molecular
nature of MCU, and its regulatory subunits, MCUb, MICU1 and 2, and
EMRE [22-27]. MCU is an integral membrane protein with two
transmembrane domains that forms the pore through which Mito Ca2+

currents are conducted across the IMM [22,23]. MCUb has been
identified as a member of the oligmeric pore complex which reduces
Mito channel activity [26]. MICU1 contains EF-hand Ca2+-binding
domains and is found in the Mito inter-membrane space (IMS), where
it serves as a Ca2+-sensing gatekeeper, keeping the channel closed
when Ca2+ levels are low and allowing the channel to open in response
to transient Ca2+ rises [28-30]. In addition MICU1 contributes to
optimal coupling between cytosolic Ca2+ transients and activation of
Mito-based Ca2+-responsive dehydrogenases [28]. EMRE is a 10 kDa
protein proposed to be essential for the in vivo uniporter current and
additionally bridges the Ca2+-sensing role of MICU1 and MICU2 with
the Ca2+-conducting role of MCU [27].

Mito Ca2+ export is mediated by the Mito Na+/Ca2+ Exchanger
(mNCX) and the Mito H+/Ca2+ Exchanger (mHCX) which have also
been recently identified [31,32]. Short term opening of the Mito
Permeability Transition Pore (MPTP) can also contribute to Mito Ca2+

release [33].

During the systolic and diastolic phase of a heartbeat, inter-
myofibrillar Mito (IFM) which are in close proximity to the
sarcoplasmic reticulum (SR), are exposed to the changing levels of the
cytosolic Ca2+ transient. The cardiac myocyte cytosolic calcium
concentration ([Ca2+]I) increases from about 100nM during diastole,
to about 500 nM in systole; however in the privileged micro-domain
between the ryanodine receptor (RyR2) of the SR and the IFM, [Ca2+]I
transiently rises to 10-20 µM during the systolic release phase of Ca2+

exiting the SR through the RyR2. Due to the relatively low affinity of
MCU for Ca2+ the 20 to 40 fold higher [Ca2+]I levels, which persist for
about 10ms during systole, are the most active time for Mito Ca2+

import by the MCUC [34]. The Mito Ca2+ transient follows the
cytosolic Ca2+ transient with a slight delay, and a much smaller
magnitude. Overall the Mito Ca2+ uptake accounts only for 1-2% of
cytosolic Ca2+ extrusion [35,36]. The impact of Mito Ca2+ handling is
therefore not so much linked to its contribution the cytosolic Ca2+

transients, but derives more from the importance of [Ca2+]m for Mito
energetic function. The amount of Ca2+ that enters Mito via MCU or
other mechanisms, must be extruded to an equal extent by Mito Ca2+

exporters like the mNCX [31]. Feedback loops exist that regulate
increased Mito import and resultant increased Ca2+ release, so, as to
potentially protect Mito against Ca2+ overload [37]. Excessive [Ca2+]m
loading, as can occur with an acute ischemic event, can result in the
opening of the MPTP complex with large amounts of Ca2+ released
into the cytoplasm, ultimately leading to activation of cardiac myocyte
death pathways [38].

Studies in mice with ubiquitous or CM-specific inducible deletions
of MCU have generated interesting findings. Mice with a ubiquitous
knock-out of MCU are viable and show decreased energetic efficiency
and maximal performance of skeletal muscle [39]. Cardiac function
was not evaluated in detail. Subsequent work with MCU KO mice
generated in a C57BL/6 background showed mid-gestation lethality
[40]. Recent reports indicate that β-adrenergic responsiveness [41] and
the fight or flight response, is dependent on MCU activity [42]. Two
recent reports using mice with conditional cardiac myocyte-specific

deletion of MCU [43,44] found that MCU Ca2+ conductance activity
matches energetic supply with cardiac workload during an acute stress
mediated by β adrenergic stimulation [44]. It should be noted that the
control mice and the mice with MCU deletion are in a normal
“unstressed” physiological state, unless submitted to β adrenergic
stimulation or a sprint exercise [43,44]. Old mice are known to be
submitted to aging-related “stresses” including decreasing cardiac
function and have difficulty responding to an increased demand for
cardiac work [45]. This may lead to post-translational modifications of
MCU or of other MCUC members impairing Mito Ca2+ conductance
functions independent of acute β adrenergic stimulation. Other work
has shown that post-translational modification of MCU by
phosphorylation markedly enhances the Ca2+ conductance of MCU
[46]. Using Tg mice with expression of a dominant negative form of
MCU, no acute β adrenergic stimulus was needed for MCU to function
as Mito Ca2+ importer [47]. A new report demonstrated that simulated
hyperglycemia in cardiac myocytes reduces [Ca2+]m, and glucose
oxidation with an increase in fatty acid oxidation [18]. Furthermore.
Diaz-Juarez et al. demonstrated in the same report that restoring
[Ca2+]m concentration to normal levels by genetically expressing
MCU normalized glucose and fatty acid metabolism in spite of
simulated hyperglycemia. These findings point out a possible
pathophysiological role of MCUC in simulated ischemia.

Excessive O-GlcNAcylation of CM and Mito proteins
and Mito energetic function

O-GlcNAcylation of serine or threonine residues of nuclear,
cytoplasmic and Mito proteins is a dynamic and ubiquitous protein
modification [48-50]. This process has emerged as a key regulator of
critical biological functions including transcription and translational
processes [51], and of Mito function [52], as was also shown by prior
work [53]. Post-translational protein modifications by phosphorylation
(O-P) and O-GlcNAc can have reciprocal effects on protein function
and are mediated by different types of dynamic interplays. In addition,
competitive and alternate modification of adjacent sites occurs as well
as other interactions [49]. Overall modification of protein function by
O-GlcNAc derives from the interplay between protein modification by
O-P and O-GlcNAc.

The O-GlcNAc status of proteins is regulated by O-GlcNAc
transferase (OGT) and O-GlcNAcase (GCA), which catalyze the
addition and removal of O-GlcaNAc residues, respectively [54-58]. The
overall catalytic activity of OGT is positively controlled by the
concentration of its donor substrate UDP-GlcNAc, making it an
excellent metabolic sensor. OGT is O-GlcNAcylated and tyrosine-
phosphorylated [49,56]. Recent evidence indicates that a shorter GCA
splice variant, which has enzyme activity, occurs [59] and can be Mito-
directed. Recently, several Mito proteins of the respiratory chain
complex that undergo O-GlcNAcylation in the diabetic heart have
been identified [53]. Interestingly, increased O-GlcNAcylation of
cardiac proteins occurs in the aging heart [60].

Conclusions
It is currently unclear if the decrease in Mito energetic and

metabolic function that occurs in the aging heart can be restored.
Research is needed to explore this by using two novel interventions: 1)
Rectifying [Ca2+]m through normalizing MCU levels and MCUC
function, and 2) Reversing the excessive O-GlcNAcylation of cardiac
myocytes and especially Mito proteins, including MCU. Currently no
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data are available in the literature for Mito Ca2+ handling, [Ca2+]m or
MCUC levels in cardiac myocytes from aging heart. Increased O-
GlcNAcylation of cardiac myocyte proteins from aging heart has been
reported [60], but no attempt has been made to reverse the excessive
Mito protein O-GlcNAcylation of aging heart and determine if this can
improve cardiac function in aging heart. Assuming that these
questions can be answered, innovative therapeutic approaches for the
declining function of the aging heart and its increased propensity to
develop heart failure may result.
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