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Undifferentiated State
Metabolic modulation has been used to develop new culture systems 

function using antimycin A, which decreases ATP production from 
OXPHOS and Reactive Oxygen Species (ROS) formation, can support 

from OXPHOS to glycolysis [6]. The pluripotent marker OCT4 affects 
several target genes (e.g. ATP5D) associated with energy metabolism 
which are in favor of glycolysis [1]. Various new hPSC culture systems 
have been developed in recent years, including defined serum-free 
media (e.g., mTESR, StemPro, and E8) and synthetic substrates (e.g., 
synthemax) [7,8]. How the subtle differences in these culture conditions 
affect energy balance and the differentiation efficiency of hPSCs needs 
to be explored.

IPSC Reprogramming
Metabolic plasticity of PSCs has been recently demonstrated in the 

method development of iPSC reprogramming [4]. The somatic cells 
switch the metabolism from OXPHOS to the enhanced glycolysis and 
become pluripotent when reprogramed with pluripotent genes and/or 
small molecules [9,10]. Compared to early passages of iPSCs, the levels 
of metabolites from late passages of iPSCs were found more close to 
those of ESCs. The slow transition in the metabolic profile changes also 
suggested the effect of “metabolic memory” during reprogramming 
[9]. Consequently, the somatic cells with a higher glycolytic and lower 
OXPHOS capacity showed higher reprogramming efficiency [4,9]. 
Therefore, promotion of glycolic metabolism by drugs, hypoxia, or 
supplementation of glycolic intermediates (e.g. PS48, a small molecule 
activator of 3’-phosphoinositide-dependent kinase-1 (PDK1)) has been 
found to augment the reprogramming efficiency, while inhibition of 

glycolysis and/or stimulation of OXPHOS impaired reprogramming 
[9-11].

Specific Lineage Differentiation: Monolayer or 
Embryoid Body (EB)?

Most current hPSC differentiation protocols either use the 
formation of EBs or through monolayer induction by growth 
factors. Higher differentiation efficiency has been observed for 
some monolayer protocols for several lineages (cardiomyocytes, 
hematopoietic progenitors, etc) compared to EB protocols [12,13]. Due 
to the differences in oxygen and nutrient transport in EBs compared to 
monolayer cultures, distinct different metabolic fluxes were observed 
during spontaneous differentiation with EBs displaying a stronger 
lactogenic pattern [14]. However, the energy needs for lineage-specific 
differentiation may be different from spontaneous differentiation. 

The Case of Neural Differentiation
Although neural stem/progenitor cells can be derived from 

hPSCs, little is known about the bioenergetic requirements during 
this cellular process. Contrary to the increased utilization of OXPHOS 
during hPSC differentiation, results also have been reported for the 
shift from OXPHOS to glycolysis during neural differentiation of 
hPSCs [15,16]. The conflicting results may be due to the variations in 
neural differentiation protocols, the culture conditions, and the stage 
of differentiation. For example, proliferating neural progenitor cells 
showed higher levels of glycolysis compared to neural stem cells [2]. 
Evaluation of metabolic shift for differentiation into different subtypes 
of neural cells has direct impact in PSC engineering. Most neural 
differentiation protocols from hPSCs are lengthy. For example, the 
derivation of Oligodendrocyte Progenitor Cells (OPCs) from hESCs 
needs 41 days in the production process involving both suspension 
and adherent cultures [17]. The failure of the production process will 
cause huge economical loss due to the scale of production. The ability 
to predict the differentiation outcome by monitoring the metabolic 
activity will greatly benefit the production of hPSC-derived OPCs.
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In recent years, metabolic plasticity of human Pluripotent Stem 
Cells (hPSCs), including human Embryonic Stem Cells (hESCs) and 
induced Pluripotent Stem Cells (iPSCs), emerges as an important 
area to regulate hPSC expansion, differentiation, and the iPSC 
reprogramming [1,2]. PSCs have unique energy and biosynthetic 
requirements and utilize predominantly glucose through glycolysis 
rather than Oxidative Phosphorylation (OXPHOS) at undifferentiated 
state [3]. Upon differentiation, the metabolic pathway is observed 
to shift from glycolysis to OXPHOS [2]. The reverse process is also 
observed during the reprogramming of somatic cells to iPSCs, where 
the metabolic pathway shifts from OXPHOS to glycolysis when the 
cells gain pluripotency [4]. Metabolic pathways of PSCs (e.g. glucose 
metabolism, mitochondrial function, redox status, etc.) can be regulated 
by environmental conditions such as oxygen and the biomolecules 
that act in the intermediate steps of glycolysis and/or OXPHOS 
[5]. Understanding the metabolic status during different stages of 
PSC development can benefit various aspects of PSC engineering in 
expansion, differentiation, and reprogramming.

Expansion and Maintenance of hPSC in 

Studying the effect of 3-D organization on metabolic fluxes during 
lineage-specific differentiation would be required.

for undifferentiated hPSCs. For example, modulation of mitochondria 

undifferentiated hPSC propagation by stimulating the metabolic shift 
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The Case of Cardiomyocyte Differentiation
Cardiomyocyte differentiation has been significantly improved in 

on the status of the cell population before the growth factor induction, 
even though the cells do express high levels of pluripotent markers. 
The ability to detect the subtle differences in hPSCs contributing to 
differentiation variations is needed for robust production of hPSC-
derived cardiomyocytes. The endogenous ROS level, which is promoted 
in high glucose medium, was found to enhance cardiomyocyte 
differentiation from PSCs [20]. In addition, downstream purification 
is also critical to the isolation of cardiomyocytes because the 
differentiation efficiency is low (20-50%) in most of the protocols. 
Based on distinct metabolic flow, it has been demonstrated that hPSC-
derived cardiomyocytes can be enriched under glucose-depleted and 
lactate abundant conditions [21]. Providing the medium that can 
induce adult-like energy metabolism was also found to accelerate the 

Current Challenges and Perspectives
Although the metabolic shift correlates with the status during PSC 

expansion, differentiation, and iPSC reprogramming, applications of 
metabolic regulation in hPSC-derived cell production are still illusive 
and needs further studies and better understanding of the effects of 
various metabolites and substrates. Glucose and oxygen are the two 
most important substrates in cell metabolism, and their concentrations 
in the culture media can be used to modulate metabolic status of cells. 
Design the feeding regime and the exposure to hypoxia condition can 
help to regulate the cellular composition. In addition, small molecules 
affecting the mitochondrial function and glycolysis/OXPHOS pathways 
can also be used to modulate PSC fate decisions. Understanding the 
metabolic plasticity can help design the process in PSC engineering in 
the following aspects: 1) developing well-defined culture conditions 
for hPSCs; 2) process monitoring based on changes in the metabolic 
status of the cells; 3) developing novel downstream separation process 
for purifying the cells of specific lineages differentiated from hPSCs. 
These developments depend on if the following questions can be 
answered: 1) Can metabolic status be used to predict the specific lineage 
differentiation efficiency? 2) Can metabolic status be used to modulate 
the composition of cell population? 3) Can metabolic regulation be 
used for process integration of iPSC reprogramming, expansion, and 
differentiation? Taken together, translation the findings in metabolic 
plasticity of hPSCs to the manufacturing process should accelerate the 
advancements in hPSC-derived cell production for drug screening, 
disease modeling, and tissue engineering. 
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recent years due to stage-wise growth factor induction or modulation of 
Wnt signaling [12,18,19]. However, the robustness of the process relies 

maturation of human iPSC-derived cardiomyocytes, which usually 
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